
THE ADDITIVITY OF THE LEBESGUE AREA 

J. W. T. YOUNGS 

A triple of continuous functions T: xi(u1
t u2), i = l, 2, 3, defined 

on a closed square Q [ O g w x ^ l , 0 ^ w 2 ^ l ] represents a surface © 
(1.6, 1.17, 1.21).1 If r is any closed rectangle in Q then we may speak 
of the triple Tr consisting of the above triple T with its range of defini
tion restricted to r. This triple generates a surface @(r). If r\ and r2 

have no interior points in common, and ri+r2 = Q, it is natural to 
hope that £(©) =Z,(©(ri))+Z,(@(r2)) where L is the symbol used to 
indicate the Lebesgue area (3.13). This statement is certainly true 
whenever the Lebesgue area is given by the standard integral for
mula, since the Lebesgue integral is additive. However, in general it 
is false. I t may be said that this note is concerned with the statement 
that if the triple is constant on r\-r%, the Lebesgue area is additive. 

Stated in this fashion the theorem may appear to be new. Actually 
it is but a very special case of a fundamental problem in the theory 
of area. The classical conjecture is that the area is additive under the 
much weaker requirement that the triple be rectifiable on r\-r^ No 
proof of this conjecture has, to our knowledge, appeared. (In this 
connection see McShane [l, p. 138].) 

In relation to existing literature the theorem of this note is in
cluded in a more general theorem due to Morrey [ l ] . In fact, the 
first case in Morrey's proof [l, p. 314] is essentially the theorem 
of this paper. A discrepancy in his argument was rectified by Radó 
and Reichelderfer [ l ] in an independently interesting discussion of 
stretching processes. 

This result, therefore, is not new. 
The point of this treatment is the utter simplicity of the stretching 

process here employed. The development serves to make a known 
result more accessible. 

THEOREM 1. If a polyhedron $ (3.11, 1.21) has a quasi-linear (1.7) 
representation T: x(u), uÇiQ, such that the image of the side s [u1 = li 

O^u2^ l ] is interior to a sphere of diameter less than e about the point 
a [a1

 f a
2, a 3] , then there exists a polyhedron $* with quasi-linear repre

sentation !T*:#*(w), w£Q, such that 
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1 The notation and terminology of this note are largely due to Radó [ l] ; in fact, 
numbers in parentheses refer the reader to appropriate paragraphs in his paper. 
Numbers in brackets refer to the bibliography. 
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(1) £ ($* ) = £($) .» 
(2) x*(u)=a for w £ s . 
(3) ||**(tt) - * ( s 0 | | <e , hence d($*, %)<e (1.1, 1.22). 

PROOF. Define x^u1, u?)=x(aul, u2), a > l . Since T is continuous 
we may choose a so that ||#«(tt)—#(#)|| <€, for w G ^ I O ^ ^ l / a , 
0 ^ w2 :§ 1 ], and further the image of 5 = Q — Ra under T is in a sphere 
of diameter less than c about a. The representation xa(u) is certainly 
quasi-linear in Ra. 

Define x*(u) to be equal to xa(u) on Ra. Now #*(«) is a quasi-linear 
representation of $ on Ra. 

We have yet to define x*(u) on the rest of Q. There is a set of in
tervals 7i, • • • , 7n_2 on | V = 1/a, O^w 2 ^ l ] such that x*(u) is linear 
on each of them and consecutive I's abut. Their end points, in order, 
are 

Po[l/a, 0], ph • • • ,/>n-2[l/<*, 1]. 

Add to this sequence £ n - i [ l , l ] and £ n [ l , 0] . 
Let p be the point [(ce+l)/2ce, — l ] and consider the segments 

(Pi pk), k = l, • • • , n — 1. Each segment cuts [ l / a ^ w ^ l , w2 = 0] in 
exactly one point qu. Join pk to g^+i, ife = l, • • • , w —2. The rectangle 
S is now subdivided into 2w —2 triangles whose vertices are in the set 
Po, ' * • , £n , <?1, • • • , <Zn-L 

The triple #*(w) has been defined at the vertices po, • • • , pn-2* 
Let x*(pn-i):=x*(pn)=a1 and #*(<?*,) =#*(£*)> & = 1, • • • , »—1. 
Since the mapping is defined at the vertices of each triangle of the 

subdivision there is a unique linear extension over each triangle. The 
extensions will match along the side two triangles may have in com
mon, and hence we have a quasi-linear3 extension on 5. Define x*(u) 
over S to be this extension. 

Now T*:x*(u) is quasi-linear on Q and so represents a poly
hedron $*. 

I t is important to notice that the map of each of the triangles in S 
is a segment or a point and hence contributes zero area. Therefore 

Secondly, x*(w)=x*(£w)=x*(£w-i) = # for uÇîs. 
Finally, T*(S)CT(S) + [the segment from T(p*-i) to a]. But 7\S) 
2 -£($) is the elementary area of the polyhedron ty, that is, the area in the ordinary 

geometric sense. It is not necessary, for the purpose of this note, to know that this 
coincides with the Lebesgue area. The fact that this is so, though sometimes ignored, 
is by no means obvious (3.20). 

3 It is important to notice that a quasi-linear representation need not be a map 
which carries each triangle of the subdivision into a nondegenerate triangle. The point 
set covered by a quasi-linear map may, for example, be a single point. 
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is contained in the sphere of diameter e about a. Therefore T*(5) is 
in the same sphere. Now in view of our choice of a it follows that 
||#*(w)— #(#)|| <€ for uÇzQ. 

REMARK. The theorem may be stated with any rectangle R replac
ing the square Q. 

Let us turn at once to see how this stretching process is applied 
in the proof of the additivity result. 

Consider a continuous triple T: x(u), uÇzQ. Let Q be divided 
by a line ul — c into two rectangles R\ [ O ^ w 1 ^ , 0 ^ w 2 ^ l ] and 
R2 [c^u^l, 0 g w 2 ^ l ] . Let Ti be the triple x(u)f uGRi} * = l, 2. 
Now T is a representation of a surface ©, while 7\ is a representation 
of a surface ©t-, i = l, 2. I t is both well known and easy to see that 
I ( @ ) ^ I ( @ i ) + i ( © 2 ) . The reverse inequality is usually false. We are 
interested in a case in which it is true, making the Lebesgue area 
additive. 

THEOREM 2. Ifx(u) is constant on ul = c, thenL(<&) =L(©i)+£(©*)• 

PROOF. Grant, for the moment, the existence of two sequences 
of polyhedra {ityn} and {2$n}, having the property that for i = l, 2, 
£(•$»)—*£(©«), and each 4$w has a quasi-linear representation #,»(«) 
on Ri such that ||;#n(w)—#(^)|| < l / w for w£2?i. 

The justification of this will be taken up presently. 
I t is enough to obtain a sequence of polyhedra {tyn} with quasi-

linear representation xn(u) on Q such that E(tyn) is within l/n of 
E ( i$« )+£( •?» ) . and ?w->®. 

As a matter of fact, we are going to obtain the stronger result, 
EWn)=E(1<$n)+EWn), and ?$„->©. 

The theorem will then follow, since by the definition of the Lebesgue 
area, L(@)£l im inf E ( $ n ) = l i m inf [ £ ( i ^ n ) + £ ( 2 ^ w ) ] = l i m Ed%) 
+ l i m £ ( 2 ^ w ) = i ( @ i ) + i : ( © 2 ) . 

The process by which the sequence of polyhedra {tyn} is obtained 
is based on Theorem 1. Were we to define xn(u) to be &n(u) on Ri the 
xn(u) would fail to represent the required sequence of polyhedra only 
by virtue of the fact that continuity, in general, would be lacking 
along ux — c. Theorem 1 essentially enables us to alter ixn(u) and 
iXn(u) slightly as to position and not at all as to area so that they will 
match along ul = c. 

Consider any *$n and its quasi-linear representation iXn{u), w£i?t-. 
Theorem 1 guarantees the existence of a polyhedron *$„* with quasi-
linear representation iX^(u), uÇiRi, such that : 

(1) £(#»*) = E ( # n ) . 
(2) &*(u)=x(u), a constant, on [w1 = c, 0 : § # 2 ^ l ] . 
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(3) ||#„*(«) — iXn(u)\\<2/n. 
Now define Tn'xn(u) = iXf(u), uÇîRu i = l, 2. 
This is a continuous triple due to condition (2), and so it is a quasi-

linear triple representing a polyhedron $». We shall show that {$w} 
has all the desired properties. 

First, E(<^n)=1E(i(^n)+E(2<^n) since the elementary area is addi
tive. 

Next, fo r i = l, 2: 

||#n(w) ~ x(u)\\ = 11»•#»*(#) — x(u)\\ on i£t-

^ ||<*n*(«0 — iXn(u)\\ + \\iXn(u) — x(u)\\ OU Rt 

^ 2/n + l/n oh (). 

Therefore xn(u) converges uniformly to x(u) on Q and hence {$w} 
certainly converges to <S. 

I t now remains but to consider the statement deferred in the first 
paragraph of the proof. 

Briefly the problem amounts to this: Given a representation x(u) of 
a surface & on a rectangle R we need to know that there exists a poly
hedron 3̂ whose area is close to the area of © and admits of a quasi-
linear representation on R which is close to the given representation of @. 

Given e>0 , by the definition of the Lebesgue area (3.13) there is 
a polygon $ such that d{% © ) < € and | E ( $ ) - L ( © ) | <€. 

Since $ is a polyhedron it has a quasi-linear representation x(u)> 
u £ J3. The set B is the closure of a Jordan region with polygonal 
boundary. The set B may be R but this is by no means certain, or 
even useful. By the definition of distance (1.17) there is a topological 
transformation T(R)=B such that ||#(w)— #(r(«))|| <€. 

The continuity of x{u) guarantees that there is a ô > 0 such that 
all maps fx(R) =B satisfying | |M(^) —T(«) | | < S have the property that 
\\&Qi(u))-X(T(u))\\<e. Hence \\x(u) -&(jx(u))\\ <2e. 

We can select fx(u) so that in addition to satisfying the above inequality 
it is quasi-linear and topological on R. The proof of this assertion fol
lows as a result of some remarks of Franklin and Wiener [l, pp. 
764-766]. 

LEMMA (FRANKLIN AND W I E N E R ) . Given e > 0 and a topological 
transformation r ( s ) = S (where s and S are closed squares) we may 
subdivide s and S into corresponding convex polygons • • • having the 
property that any topological transformation ix(s)=S which maps each 
polyhedron of s onto the corresponding polyhedron of S is at a distance 
less than e from r. 
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The reader will readily make the necessary adjustments from s to R 
and S to B. The convex polygons mentioned above may be chosen 
as triangles and a ju may be exhibited which is linear on the triangles 
ofi î . 

Now x(fx(u)) is clearly quasi-linear on R. Moreover, it is a repre
sentation of $ , and so $ has a quasi-linear representation on R within 
2e of the given representation of ©. Since | E(ty) —L(©) | <€ the proof 
is complete. 

We have incidentally proved the independently important theo
rem: 

THEOREM 3. Any polyhedron has a quasi-linear representation on a 
rectangle. 

REMARK. The square Q in the additivity theorem can be replaced 
by a simply connected Jordan region and its boundary, the dividing 
line can then be replaced by any crosscut on which the triple is 
constant. 

I t is possibly of some interest, in conclusion, to compare the sur
face stretching done here in Theorem 1 with that of the paper by 
Radó and Reichelderfer. Briefly, their process stretches a surface 
directly towards a fixed point. Each point of the surface sufficiently 
close to the fixed point is moved along the ray to the fixed point.The 
stretching is managed, however, so that the increase in area, though 
generally positive, is ingeniously kept within bounds. Here the 
stretching is by no means directly towards the fixed point, and it is 
precisely the rather circuitous route taken to the point which enables 
us to keep the added area equal to zero. If a polyhedron undergoes 
their stretching process it will, in general, no longer be a polyhedron; 
the stretching done here will preserve the polyhedral character of the 
surface. On the other hand their stretching process applies to situa
tions which this cannot touch. For example, it will deal with the case 
in which r\ is a square interior to Q, the set r2 = Q — ri, and the triple 
is constant on r\-r%. 
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PURDUE UNIVERSITY 

SOLUTION OF THE "PROBLÈME DES MÉNAGES" 

IRVING KAPLANSKY 

The problème des ménages asks for the number of ways of seating n 
husbands and n wives at a circular table, men alternating with 
women, so that no husband sits next to his wife. Despite the consid
erable literature devoted to this problem (cf. the appended bibliog
raphy), the following simple solution seems to have been missed. 

I t is convenient first to solve two preliminary problems, perhaps 
of some interest in themselves. 

LEMMA 1. The number of ways of selecting k objects, no two consecu
tive, from n objects arrayed in a row is n-k+iCk-

Let fin, k) be the desired number. We split the selections into two 
subsets: those which include the last of the n objects and those which 
do not. The former are fin — 2, k — 1) in number (since further selec
tion of the second last object is forbidden); the latter are f(n — l, k) 
in number. Hence 

fin, *) = f{n - 1, *) + f{n - 2 , k - 1), 

and, combining this with fin, 1 ) = » , we readily prove by induction 
that ƒ(», k) =n-k+iCk-

LEMMA 2. The number of ways of selecting k objects, no two consecu
tive, from n objects arrayed in a circle is n-kCkn/(n — k). 

This differs from the preceding problem only in the imposition of 
the further restriction that no selection is to include both the first 
and last objects; and the number of such selections which are other
wise acceptable is f(n — 4, k — 2). Hence the desired result is fin, k) 
—jf(»-4, k-2) = n-hCwl'(n-k). 
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