ON THE CONVERGENCE OF CERTAIN PARTIAL SUMS OF A TAYLOR SERIES WITH GAPS

GEORGE PIRANIAN

We consider the function f(z) determined by the power series

(1)
$$f(z) = \sum_{1}^{\infty} c_n z^{\lambda_n}$$

and its direct analytic continuation. For simplicity, it is supposed that $\limsup |c_n|^{1/\lambda_n} = 1$.

We write

$$S_n(z) = \sum_{1}^{n} c_p z^{\lambda_p},$$

$$M(r) = \max_{\substack{|z|=r}} |f(z)| \qquad (0 < r < 1),$$

$$M(r) = 1 \qquad (r \le 0),$$

$$\theta_n = \lambda_{n+1}/\lambda_n - 1.$$

Ostrowski has proved¹ that if $\{\theta_{n_i}\}$ is a sequence extracted from the sequence $\{\theta_n\}$ such that $\lim \inf \theta_{n_i} > 0$, then every regular point of f(z) on the circle |z| = 1 is the center of a circle in which the sequence $\{S_{n_i}(z)\}$ converges uniformly to f(z). Restricting ourselves to the question of convergence at the regular points themselves, we shall prove the following theorem:

If

(2)
$$\limsup_{i\to\infty} \frac{\log (M(1-\theta_{n_i}^2)/\theta_{n_i})}{\lambda_{n_i}\theta_{n_i}^2} < \infty,$$

then $\lim_{x \to a} S_{n_i}(z) = f(z)$ at all regular points of (1) on the circle |z| = 1.

For the proof, we shall assume that $\lim \theta_{n_i} = 0$; afterwards, we shall remove this restriction, with the aid of Ostrowski's theorem.

Let z_1 be a regular point for (1) on the circle |z| = 1, and let z_0 be a point on the segment joining z_1 to the origin. We write $|z_1-z_0| = a$, and for every positive integer *i* we define the three circles

Presented to the Society, April 24, 1943; received by the editors January 8, 1943.

¹ A. Ostrowski, Über eine Eigenschaft gewisser Potenzreihen mit unendlich vielen verschwindenden Koefficienten. Preuss. Akad. Wiss. Sitzungsber. vol. 34 (1921) pp. 557-565. Essentially the same proof is to be found in P. Montel's Leçons sur les families normales de fonctions analytiques et leurs applications, pp. 204-207.

GEORGE PIRANIAN

[December

,

$$\Gamma'_{i}: |z - z_{0}| = \rho'_{i} \qquad (0 < \rho'_{i} < a),$$

$$\Gamma(a): |z - z_{0}| = a, \qquad \Gamma''_{i}: |z - z_{0}| = \rho''_{i} \qquad (\rho'_{i} < a),$$

where ρ_i' shall be chosen so that the function f(z) is holomorphic in the closed region bounded by Γ_i' . By M_i' , $M_i(a)$, and M_i'' we denote the maximum value of $|f(z) - S_{n_i}(z)|$ on Γ_i' , $\Gamma(a)$, and Γ_i'' , respectively. We write

$$R'_i = 1 + \rho'_i - a, \qquad R''_i = 1 + \rho''_i - a,$$

and we choose r_i so that $R'_i < r_i < 1$.

By Cauchy's formula we have, on the circle $|z| = R'_i$,

$$|f(z) - S_{n_i}(z)| \leq \sum_{p=\lambda_{n_i+1}}^{\infty} \frac{M(r_i)}{r_i^p} R_i'^p = \frac{M(r_i)r_i}{r_i - R_i'} \left(\frac{R_i'}{r_i}\right)^{\lambda_{n_i}(1+\theta_{n_i})}$$

and by the principle of the maximum

$$\log M_i' \leq \log \frac{M(r_i)r_i}{r_i - R_i'} + \lambda_{n_i}(1 + \theta_{n_i}) \log \frac{R_i'}{r_i}$$

On the circle $|z| = R'_i$, and therefore also on Γ'_i , we have

$$\left|S_{n_i}(z)\right| \leq M(r_i) \sum_{0}^{\lambda_{n_i}} \left(\frac{R_i^{\prime\prime}}{r_i}\right)^p < \frac{M(r_i)R_i^{\prime\prime}}{R_i^{\prime\prime} - r_i} \left(\frac{R_i^{\prime\prime}}{r_i}\right)^{\lambda_{n_i}}.$$

Since f(z) is holomorphic in the closed region bounded by Γ_i'' , and since at least one of the expressions $R_i''/(R_i''-r_i)$, $(R_i''/r_i)^{\lambda_{n_i}}$ tends to ∞ as $i \to \infty$, we may write, for any positive η and for *i* sufficiently large,

$$\log M_i^{\prime\prime} < \log \frac{M(r_i)(1+\eta)R_i^{\prime\prime}}{R_i^{\prime\prime}-r_i} + \lambda_{n_i}\log \frac{R_i^{\prime\prime}}{r_i}$$

Applying Hadamard's three-circle theorem to the function $S_{n_i}(z)$ -f(z) on the circles Γ'_i , $\Gamma(a)$, Γ'_i , we have now

$$\log \frac{\rho_i''}{\rho_i'} \log M_i(a) \leq \log \left(\frac{\rho_i''}{a}\right) \log M_i' + \log \left(\frac{a}{\rho_i'}\right) \log M_i''$$

$$(3) \qquad < \log \left(\frac{\rho_i''}{a}\right) \left\{ \log \frac{M(r_i)r_i}{r_i - R_i'} + \lambda_{n_i}(1 + \theta_{n_i}) \log \frac{R_i'}{r_i} \right\}$$

$$+ \log \left(\frac{a}{\rho_i'}\right) \left\{ \log \frac{M(r_i)(1 + \eta)R_i''}{R_i'' - r_i} + \lambda_{n_i} \log \frac{R_i''}{r_i} \right\}.$$

In the proof of his theorem Ostrowski now takes the point z_0 near

882

to the point z_1 and chooses for Γ'_i , $\Gamma(a)$, and Γ''_i three fixed circles with radii sufficiently near to $|z_1-z_0|$ (with $\Gamma(a)$ including the point z_1 instead of passing through it). In our case it is necessary to take z_0 near to the origin and to let ρ'_i and ρ''_i tend to a as i becomes large. We choose $\rho'_i = (1-b_i)a$, $\rho''_i = (1+b_i)a$, $r_i=1-k_i$, where $0 < b_i < 1$ and $0 < k_i < ab_i$; substituting these values in (3), expanding terms such as log $(1+ab_i)$ in power series, and dividing both sides of the inequality by b_i , we get

$$2(1 + b_i^2/3 + \cdots) \log M_i(a) < (1 - b_i/2 + b_i^2/3 - \cdots)$$

$$\cdot \left\{ \log \frac{M(1 - k_i)(1 - k_i)}{(1 - k_i/ab_i)ab_i} + \lambda_{n_i}(1 + \theta_{n_i}) \log \frac{1 - ab_i}{1 - k_i} \right\}$$

$$+ (1 + b_i/2 + b_i/3 + \cdots)$$

$$\cdot \left\{ \log \frac{M(1 - k_i)(1 - k_i)(1 + \eta)}{(1 + k_i/ab_i)ab_i} + \lambda_{n_i} \log \frac{1 + ab_i}{1 - k_i} \right\}$$

$$< 2\eta + 3k_i + 3k_i/ab_i - 3 \log a$$

$$+ 2(1 + b_i^2/3 + \cdots) \log \frac{M(1 - k_i)}{b_i}$$

$$+ \lambda_{n_i} \{\theta_{n_i}[1 - b_i/2 + b_i^2/3 - \cdots] \\ \cdot [-ab_i - a^2b_i^2/2 - \cdots + k_i + k_i^2/2 + \cdots]]$$

$$+ [1 - b_i/2 + b_i^2/3 + \cdots] [-ab_i - a^2b_i^2/2 - \cdots]$$

$$+ [1 + b_i/2 + b_i^2/3 + \cdots] [ab_i - a^2b_i^2/2 + \cdots]$$

$$+ 2[1 + b_i^2/3 + \cdots] [k_i + k_i^2/2 + \cdots] \}$$

$$< 2\eta + 3k_i + 3k_i/ab_i - 3 \log a + 3 \log \frac{M(1 - k_i)}{b_i}$$

$$- (\lambda_{n_i}/2) \{ab_i[\theta_{n_i} - b_i(1 - a)] - 3k_i\}$$

provided θ_{n_i} and b_i are sufficiently small and the sum of the terms in the braces of the last term is positive.

Now suppose that

$$\limsup_{i \to \infty} \frac{\log (M(1 - \theta_{n_i}^2)/\theta_{n_i})}{\lambda_{n_i} \theta_{n_i}^2} < H \qquad (1 < H < \infty).$$

Choose $b_i = b\theta_{n_i}$, $k_i = b_i\theta_{n_i}/b = \theta_{n_i}^2$, where b > 14H. The last member of (4) becomes

$$- (\lambda_n \theta_{n_i}^2 b/2) \{ a [1 - b(1 - a)] - 3/b \}.$$

1943]

(4)

GEORGE PIRANIAN

[December

If a is chosen sufficiently near to 1, $b\{a[1-b(1-a)]-3/b\} > 10H$, and for sufficiently large values of i (4) becomes

$$(2 + \epsilon) \log M_i(a) < K(a, b) + 3 \log M(1 - \theta_{n_i}^2)/\theta_{n_i} - 5\lambda_{n_i}\theta_{n_i}^2 H,$$

where K(a, b) depends on a and b only. But $\lim_{i\to\infty} \theta_{n_i} = 0$ implies, together with the validity of (2), that $\lim_{i\to\infty} \lambda_{n_i} \theta_{n_i}^2 = \infty$. For sufficiently large i we have

$$(2+\epsilon)\log M_i(a) < -\lambda_{n_i}\theta_{n_i}^2H,$$

that is,

$$\lim_{i\to\infty}\log M_i(a)=-\infty,$$

and, in particular,

$$\lim_{i\to\infty}S_{n_i}(z_1)=f(z_1).$$

Now let $\{\theta_{n_i}\}$ be any sequence of values θ_{n_i} for which (2) is satisfied, and let z_1 be a regular point for (1). From every subsequence of $\{\theta_{n_i}\}$ we can extract a further subsequence $\{\theta_{m_j}\}$ such that either $\lim \theta_{m_j} = 0$ or $\lim \inf \theta_{m_j} > 0$. In the first case, $\lim S_{m_j}(z_1) = f(z_1)$ by what we have just proved; in the second case, by Ostrowski's theorem. From every subsequence of $\{n_i\}$ we can therefore extract a further subsequence $\{m_j\}$ such that $\lim S_{m_j}(z_1) = f(z_1)$. It follows that the sequence $\{S_{n_i}(z_1)\}$ itself tends to $f(z_1)$, and our theorem is proved.

Condition (2) may be replaced by one that is somewhat less general, but can be expressed more immediately in terms of the behavior of M(r):

If lim inf $\theta_{n_i} = \theta$, we define, for $h > \theta$,

$$\lambda(h) = \underset{\substack{\theta_{n_i} \leq h}}{\text{g.l.b.}} \lambda_{n_i};$$

for $0 \le h \le \theta$, we write $\lambda(h) = \infty$. It follows from our theorem that $\lim_{n_i} S_{n_i}(z_1) = f(z_1)$ whenever z_1 is a regular point for (1) on the circle |z| = 1, provided

(5)
$$\limsup_{h\to 0+} \frac{\log (M(1-h^2)/h)}{h^2\lambda(h)} < \infty.$$

If we write $r = 1 - h^2$, (5) becomes

$$\limsup_{r\to 1-0} \frac{\log \left[M(r)/(1-r)^{1/2} \right]}{(1-r)\lambda(1-r)^{1/2}} < \infty.$$

884

The author is indebted to Professor S. Mandelbrojt, who suggested the existence of the present theorem and gave valuable assistance in its development.

THE RICE INSTITUTE

ON ABEL AND LEBESGUE SUMMABILITY

OTTO SZÁSZ

1. Introduction. A series $\sum_{1}^{\infty} a_n$ is called Abel summable to the value s if the power series $\sum a_n r^n$ converges for 0 < r < 1, and if $\sum a_n r^n \to s$ as $r \uparrow 1$; it is called Lebesgue summable if the sine series

(1.1)
$$\sum_{n=1}^{\infty} a_n \frac{\sin nt}{n} = F(t)$$

converges in some interval $0 < t < \tau$, and if

(1.2)
$$t^{-1}F(t) \to s \text{ as } t \downarrow 0.$$

We write in the first case $A \sum a_n = s$, and in the latter case $L \sum a_n = s$ (summability A or L respectively). It is known that convergence does not imply L-summability and conversely L-summability does not imply convergence of $\sum a_n$. Tauberian type problems which arise out of this situation have been discussed.¹ It is also known that either convergence or L-summability imply A-summability. As to the converse (restricting ourselves to real a_n) we have proved the following theorems:

Тнеокем 1. [8, pp. 582-583]. If

(1.3)
$$\sum_{n}^{2n} (|a_{\nu}| - a_{\nu}) = O(1) \quad as \quad n \to \infty,$$

and if

(1.4)
$$\sum_{n=1}^{\infty} a_n r^n = O(1) \quad as \quad r \uparrow 1,$$

Presented to the Society, December 27, 1942; received by the editors December 16, 1942.

¹ See [8], where further references are given; numbers in brackets refer to the bibliography at the end of this paper.