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We consider the function f(z) determined by the power series 

(i) m = è cnZ*o 
i 

and its direct analytic continuation. For simplicity, it is supposed that 
lim sup| cn| ^«ssl . 

We write 
n 

1 

M(r) = max | ƒ(*) | (0 < r < 1), 
| # | - r 

M{r) = 1 (r g 0), 

&n = Xn-|-i/Xw 1. 

Ostrowski has proved1 that if {dni} is a sequence extracted from the 
sequence {dn} such that lim inf 0Wt->0, then every regular point of 
ƒ(z) on the circle | z\ = 1 is the center of a circle in which the sequence 
{Sni(z)} converges uniformly to f(z). Restricting ourselves to the 
question of convergence at the regular points themselves, we shall 
prove the following theorem : 

If 
log (M(i - elt)/ent) 

(2) hm sup -—j < oo, 

then lim Sni(2) —/(%) at all regular points of (1) on the circle \z\ = 1 . 

For the proof, we shall assume that lim 0n. = 0; afterwards, we shall 
remove this restriction, with the aid of OstrowskFs theorem. 

Let Zi be a regular point for (1) on the circle \z\ =1 , and let z0 be 
a point on the segment joining Z\ to the origin. We write 12i—2o| =a, 
and for every positive integer i we define the three circles 

Presented to the Society, April 24, 1943; received by the editors January 8, 1943. 
1 A. Ostrowski, Ober eine Eigenschaft gewisser Potenzreihen mit unendlich vielen 

verschwindenden Koefficienten. Preuss. Akad. Wiss. Sitzungsber. vol. 34 (1921) pp. 557-
565. Essentially the same proof is to be found in P. Montel's Leçons sur les families 
normales de fonctions analytiques et leurs applications, pp. 204-207. 
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1 7 : \z~ z0\ = Pi ( 0 < p / < a ) , 

T(a): | z - 201 = », r<" : | * - *01 = P / ' G><" > <0, 

where p / ' shall be chosen so that the function f{z) is holomorphic in 
the closed region bounded by 17 ' . By Mi, Mi{a)1 and Mi' we denote 
the maximum value of \f(z) —Sni{z)\ on 17, T{a), and 1 7 ' , respec
tively. We write 

Ri = 1 + p / - a, R!' = 1 + p / ' - a , 

and we choose Yi so that 2?/ O t - < l . 
By Cauchy's formula we have, on the circle \z\ ~Ri, 

and by the principle of the maximum 

M(fi)ri R! 
log Mi S log — + X»<(1 + 6ni) log — • 

fi — Ri Ti 

On the circle \z\ =R{', and therefore also on 17 ' , we have 

Since ƒ(2) is holomorphic in the closed region bounded by 1 7 ' , and 
since at least one of the expressions Ri'/(Ri' —Yi), {Ri'/r^i tends 
to 00 as i—> 00, we may write, for any positive rj and for i sufficiently 
large, 

I f Q y X l + n ) * / ' , x *ƒ ' 
log M / ' < log — + \n. log 

Ri — Ti Ti 

Applying Hadamard's three-circle theorem to the function Sni(z) 
—ƒ(2) on the circles T / , T(a), 17 ' , we have now 

log ~- log Mi(a) ^ log ^ — ) log Ml + log / - ^ - ) log Mi' 

/pi'\{ M(ri)n s */) 

\ « / I ti — R< fi) 

/a\j M(n)(l + y)R(' , x */M 
+ log ( ^ { l o g — w — - + K< log-} . 

In the proof of his theorem Ostrowski now takes the point z0 near 



i943] PARTIAL SUMS OF A TAYLOR SERIES WITH GAPS 883 

to the point Z\ and chooses for 17, T(a), and T/ ' three fixed circles 
with radii sufficiently near to |si—s0 | (with T(a) including the point 
Z\ instead of passing through it). In our case it is necessary to take 
So near to the origin and to let pi and pi' tend to a as i becomes large. 
We choose p / = ( l — bi)a, pi' = (l+bi)a, ri=l—ki, where 0<&;<1 
and 0<ki<abi\ substituting these values in (3), expanding terms 
such as log (1+abi) in power series, and dividing both sides of the 
inequality by bi, we get 

2(1 + bï/3 + • • • ) log Mi{a) < (1 - bill + b2i/3 ) 

C Jf(1 - ki)(l - ki) 1 - abj\ 

\ (1 — ki/abi)abi W* n% 1 — ki ) 

+ (1 + bi/2-fbi/3+ • • • ) 

( M(l - ki)(l - ki)(l +v) 1 + abA 
. J fog .̂ X log v, 

I (1 + h/abi)abi 1 - kif 
< 2rj + 3ki + 3ki/abi — 3 log a 

Jf (1 - h) 
+ 2(1 + bi/3 + • • • ) log 

(4) 
bi 

2 
+ X»<{0n,.[l - V 2 + bt/3 ] 

• [ - abi - abï/2 + ki + k*/2 + • • • ] 

+ [1 - hi/2 + bï/3 - • • • ][- abi - abï/2 - • • • ] 

+ [1 + h/2 + bï/3 + • • • }[abi - abï/2 + •••} 

+ 2 [ l + J Î / 3 + - - - ][h+kï/2+--- ]} 

M(l - kt) 
< 2rj + 3ki + 3k(/abi — 3 log a + 3 log 

bi 

- (\nt/2){abi[6ni - bi(l -a)]-3ki) 

provided 6n{ and bi are sufficiently small and the sum of the terms in 
the braces of the last term is positive. 

Now suppose that 

r log (M(l - Q / f t Q ^ TT „ ^ _ _ , 
hm sup < H (1 < H < oo). 

Choose bi = bOnv ki = bldni/b=dli1 where &>14u. The last member of 
(4) becomes 

- (\neljb/2){a[\ - 6(1 - «*)] - 3/b\. 
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If a is chosen sufficiently near to 1, b{a[l -~ô(l — a)]-~3/b} >10H, 
and for sufficiently large values of i (4) becomes 

(2 + €) log Mi(a) < K(a, b) + 3 log M(l - elx)/Bni - 5Xnt.0w
2,.#, 

where K(a, b) depends on a and b only. But l i m ^ ^ n ^ O implies, 
together with the validity of (2), that lim^ooXnt.0£. — <x>. For sufficiently 
large i we have 

(2 + 6) log Mi{a) < - Xw/W,.#, 

that is, 

and, in particular, 

lim log Mi{a) = — co, 

lim Sni{zx) = f(zi). 

Now let {0nt-} be any sequence of values 0W< for which (2) is satis
fied, and let %\ be a regular point for (1). From every subsequence of 
{dni} we can extract a further subsequence {0m,.} such that either 
lim dmj = 0 or lim inf 0W,>O. In the first case, lim Smj.(zi) =f(zi) by 
what we have just proved; in the second case, by Ostrowski's theo
rem. From every subsequence of {tti} we can therefore extract a 
further subsequence {m,} such that lim SWi(3i)==/(si). I t follows 
that the sequence {^(21)} itself tends to ƒ (si), and our theorem is 
proved. 

Condition (2) may be replaced by one that is somewhat less gen
eral, but can be expressed more immediately in terms of the behavior 
of M(r): 

If lim inf 0ni=d, we define, for A>0, 

\(h) = g.l.b. Xni; 

for O^A^0 , we write \(h)~ <». I t follows from our theorem that 
lim Sni(zi) =f(zi) whenever Zi is a regular point for (1) on the circle 
\z\ = 1 , provided 

log (Jf (1 - **)/*) 
(5) lim sup < oo. 

If we write r = l—A2, (5) becomes 

log [M(r)/(1 - ryi>] 
lim sup < oo. 
,-:-<) (1 - r)X(l - r)1'* 
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The author is indebted to Professor S. Mandelbrojt, who suggested 
the existence of the present theorem and gave valuable assistance in 
its development. 
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1. Introduction. A series ̂ ian is called Abel summable to the value 
^ if the power series ^anr

n converges for 0 <r < 1, and if ̂ 2anr
n-^s as 

r Î 1 ; it is called Lebesgue summable if the sine series 

A sin nt 
(1.1) £ a » = F(t) 

î n 

converges in some interval 0 < / < r , and if 

(1.2) t-lF{t)-*s as UO. 

We write in the first case À^dn — s, and in the latter case LX)an = s 
(summability A or L respectively). It is known that convergence 
does not imply Z-summability and conversely L-summability does 
not imply convergence of ]T)a». Tauberian type problems which arise 
out of this situation have been discussed.1 It is also known that either 
convergence or Z-summability imply A -summability. As to the con
verse (restricting ourselves to real an) we have proved the following 
theorems : 

THEOREM 1. [8, pp. 582-583]. If 
In 

(1.3) ]£ (| <h\ — av) = 0(1) as w-r+oo, 
n 

and if 

(1.4) Z>nfw = 0(l) as r î l , 
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1 See [8], where further references are given; numbers in brackets refer to the 
bibliography at the end of this paper. 


