The author is indebted to Professor S. Mandelbrojt, who suggested the existence of the present theorem and gave valuable assistance in its development.

The Rice Institute

ON ABEL AND LEBESGUE SUMMABILITY

otto szász

1. Introduction. A series $\sum_{1}^{\infty} a_{n}$ is called Abel summable to the value s if the power series $\sum a_{n} r^{n}$ converges for $0<r<1$, and if $\sum a_{n} r^{n} \rightarrow s$ as $r \uparrow 1$; it is called Lebesgue summable if the sine series

$$
\begin{equation*}
\sum_{1}^{\infty} a_{n} \frac{\sin n t}{n}=F(t) \tag{1.1}
\end{equation*}
$$

converges in some interval $0<t<\tau$, and if

$$
\begin{equation*}
t^{-1} F(t) \rightarrow s \quad \text { as } \quad t \downarrow 0 \tag{1.2}
\end{equation*}
$$

We write in the first case $A \sum a_{n}=s$, and in the latter case $L \sum a_{n}=s$ (summability A or L respectively). It is known that convergence does not imply L-summability and conversely L-summability does not imply convergence of $\sum a_{n}$. Tauberian type problems which arise out of this situation have been discussed. ${ }^{1}$ It is also known that either convergence or L-summability imply A-summability. As to the converse (restricting ourselves to real a_{n}) we have proved the following theorems:

Theorem 1. [8, pp. 582-583]. If

$$
\begin{equation*}
\sum_{n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

and if

$$
\begin{equation*}
\sum_{1}^{\infty} a_{n} r^{n}=O(1) \quad \text { as } \quad r \uparrow 1 \tag{1.4}
\end{equation*}
$$

Presented to the Society, December 27, 1942; received by the editors December 16, 1942.
${ }^{1}$ See [8], where further references are given; numbers in brackets refer to the bibliography at the end of this paper.
then

$$
\begin{equation*}
t^{-1} F(t)=O(1) \quad \text { as } \quad t \downarrow 0 \tag{1.5}
\end{equation*}
$$

Theorem 2. [8, p. 585]. If (1.3) holds and if

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \liminf _{n \rightarrow \infty} \min _{n \leqq k \leqq \lambda n} \sum_{n}^{k} a_{\nu} \geqq 0, \tag{1.6}
\end{equation*}
$$

then A-summability implies L-summability.
Note that A-summability and (1.6) (without (1.3), which need not be satisfied) imply convergence (by a theorem of R. Schmidt) and are also necessary for convergence, while the series need not be L summable.

We remark also that, in the assumption and in the conclusion of Theorem 1, $O(1)$ can be replaced by $o(1)$; for if

$$
\begin{equation*}
\sum_{n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=o(1) \quad \text { as } \quad n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

then (1.6) holds. Moreover by the previous remark the series $\sum a_{n}$ converges (to zero).

We shall complete and generalize these results by proving the following theorems:

Theorem 3. If (1.3) holds then each of the statements (1.4), (1.5) and

$$
\begin{equation*}
\sum_{1}^{n} a_{\nu}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

implies the two others.
Theorem 4. If (1.3) holds then A-summability implies L-summability, but not necessarily convergence.

Theorem 5. If (1.3) holds and if $\sum a_{n}$ converges, then $\sum a_{n} \sin n t / n t$ converges uniformly in $0<t<\pi$.

This generalizes Theorem 6^{\prime} of my paper [8].
2. Proof of Theorem 3. We prove the following lemma.

Lemma 1. If (1.3) and (1.4) hold, then

$$
\begin{align*}
& s_{n}=\sum_{1}^{n} a_{\nu}=O(1), \quad \sum_{n}^{2 n}\left|a_{\nu}\right|=O(1), \quad \sum_{1}^{n} \nu\left|a_{\nu}\right|=O(n), \tag{2.1}\\
& \sum_{1}^{\infty} \nu^{-1}\left|a_{\nu}\right|<\infty, \quad \sum_{n}^{\infty} \nu^{-1}\left|a_{\nu}\right|=O\left(n^{-1}\right) \quad \text { as } \quad n \rightarrow \infty
\end{align*}
$$

The statement $s_{n}=O(1)$ is an immediate corollary of a previous result [6, Lemma 2]. Combining it with (1.3) we get

$$
\sum_{n}^{2 n}\left|a_{\nu}\right|=\sum_{n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)+s_{2 n}-s_{n-1}=O(1) \quad \text { as } \quad n \rightarrow \infty .
$$

Furthermore, where \sum_{α}^{β} means summation over the range $\alpha<\nu \leqq \beta$,

$$
\begin{aligned}
\sum_{1}^{n} \nu\left|a_{\nu}\right| & =\sum_{k=0}^{n} \sum_{n / 2^{k+1}}^{n / 2^{k}} \nu\left|a_{\nu}\right| \leqq \sum_{k=0}^{n}\left(\frac{n}{2^{k}} \sum_{n / 2^{k+1}}^{n / 2^{k}}\left|a_{\nu}\right|\right) \\
& =O\left(n \sum_{0}^{\infty} 2^{-k}\right)=O(n)
\end{aligned}
$$

(2.1) is now proved. We have thus $\sum_{n}^{2 n}\left|a_{\nu}\right|<c$, a positive constant, and $\sum_{n}^{2 n} \nu^{-1}\left|a_{\nu}\right|<c / n$, hence

$$
\sum_{1}^{n} \nu^{-1}\left|a_{\nu}\right| \leqq \sum_{k=1}^{n} \sum_{2^{k-1}}^{2^{k}} \nu^{-1}\left|a_{\nu}\right|<c \sum_{k=1}^{\infty} 2^{1-k}=2 c .
$$

This proves the first part of (2.2). Finally

$$
\sum_{n}^{\infty} \nu^{-1}\left|a_{\nu}\right| \leqq \sum_{k=1}^{\infty} \sum_{n \cdot 2^{k-1}}^{n \cdot 2 k} \nu^{-1}\left|a_{\nu}\right|<\frac{c}{n} \sum_{1}^{\infty} 2^{1-k}=\frac{2 c}{n}
$$

which proves the lemma.
We now prove Theorem 3. If (1.3) holds, then (1.8) implies (1.5) by Theorem 5 of my paper [8], and (1.4) follows from the remark to the same theorem. By the same remark (1.4) implies (1.8), hence also (1.5). Finally, assuming (1.5), to prove (1.8) we write

$$
t^{-1} F(t)-s_{n}=\sum_{1}^{n} a_{\nu}\left(\frac{\sin \nu t}{\nu t}-1\right)+\sum_{n+1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t} \equiv S_{1}+S_{2}
$$

From $0<1-\sin \nu t / \nu t<\nu^{2} t^{2}$ we get

$$
\left|S_{1}\right|<t^{2} \sum_{1}^{n} \nu^{2}\left|a_{\nu}\right|<n t^{2} \sum_{1}^{n} \nu\left|a_{\nu}\right|=t^{2} O\left(n^{2}\right)
$$

furthermore, by Lemma 1,

$$
\left|S_{2}\right|<t^{-1} \sum_{n}^{\infty} \nu^{-1}\left|a_{\nu}\right|=O\left(n^{-1} t^{-1}\right)
$$

On putting now $t=n^{-1}$ we get

$$
n F\left(n^{-1}\right)-s_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty ;
$$

this proves (1.8) and a fortiori (1.4), which completes the proof of Theorem 3.
3. Proof of Theorem 4. We first prove the following lemmas.

Lemma 2. Let

$$
\begin{aligned}
\Delta_{n}= & \sin n t / n t-\sin (n+1) t /(n+1) t \\
\Delta_{n}^{2}= & \Delta\left(\Delta_{n}\right)=\sin n t / n t-2 \sin (n+1) t /(n+1) t \\
& +\sin (n+2) t /(n+2) t
\end{aligned}
$$

then

$$
\begin{gather*}
0<\Delta_{n}^{2}<t^{2} \quad \text { for } \quad(n+2) t<\pi / 2 \tag{3.1}\\
\left|\Delta_{n}\right|<2 / n \quad \text { for } \quad n t>1 \tag{3.2}
\end{gather*}
$$

Applying the mean value theorem to Δ^{2} we get easily (see [8, Lemma 4])

$$
0<\Delta_{n}^{2}<t^{2} \quad \text { for } \quad(n+2) t<\pi / 2
$$

Furthermore

$$
\Delta_{n}=\frac{\sin (n+1) t}{n(n+1) t}-2 \frac{\sin (t / 2) \cos ((2 n+1) t / 2)}{n t}
$$

which yields

$$
\left|\Delta_{n}\right|<1 / n(n+1) t+1 / n<2 / n \quad \text { for } n t>1
$$

Lemma 3. If $\sum a_{n}$ is Abel summable and if (1.3) holds, then $\sum a_{n}$ is Cesàro summable of any order $\alpha>0$.

By Lemma 1, $s_{n}=O(1)$; this and A-summability imply ($C, 1$) summability, as was proved first by Littlewood in 1910. For a short proof (with a more general assumption) cf. [5]. That Abel summability and $s_{n}=O(1)$ imply (C, α) summability for any $\alpha>0$ has been proved by Andersen [1, p. 80]. We shall apply only the case $\alpha=1$.

Let now $\sum_{1}^{n} s_{\nu}=s_{n}^{\prime}$, then $n^{-1} s_{n}^{\prime}$ tends to a limit s; we can assume without loss of generality that $s=0$ (otherwise replace a_{1} by $a_{1}-s$). To a given positive $\epsilon<1 / 2$ we now choose $n_{0}(\epsilon)$ so that

$$
\begin{equation*}
\left|s_{n}^{\prime}\right|<\epsilon^{3} n \text { for } n>n_{0}(\epsilon)>3 \tag{3.3}
\end{equation*}
$$

By (2.2) $\sum \nu^{-1} a_{\nu} \sin \nu t$ converges absolutely; we write

$$
t^{-1} F(t)=\sum_{1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}=\sum_{1}^{n}+\sum_{n+1}^{\infty} \equiv T_{1}+T_{2}
$$

We restrict ourselves to $0<t<n_{0}^{-1}$, and choose $n=1+\left[\epsilon^{-1} t^{-1}\right]$ $>\epsilon^{-1} t^{-1}>\epsilon^{-1} n_{0}>2 n_{0}$; Abel's summation by parts yields

$$
T_{1}=s_{n} \frac{\sin n t}{n t}+s_{n-1}^{\prime} \Delta_{n-1}+\sum_{1}^{n-2} s_{v}^{\prime} \Delta_{\nu}^{2}
$$

Now $n t>\epsilon^{-1}$. Hence

$$
\begin{equation*}
\left|s_{n} \sin n t / n t\right|<\left|s_{n}\right| / n t<\epsilon\left|s_{n}\right|=\epsilon O(1) \quad \text { as } \quad t \downarrow 0, \tag{3.4}
\end{equation*}
$$

and, from (3.2) and (3.3),

$$
\begin{equation*}
\left|s_{n-1}^{\prime} \Delta_{n-1}\right|<2 \epsilon^{3} \tag{3.5}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
\left|T_{2}\right|<t^{-1} \sum_{n}^{\infty} \nu^{-1}\left|a_{\nu}\right|=O\left(n^{-1} t^{-1}\right)=O(\epsilon) \quad \text { as } \quad t \downarrow 0 \tag{3.6}
\end{equation*}
$$

Finally, write

$$
\sum_{1}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}=\left(\sum_{1}^{k-1}+\sum_{k}^{n-2}\right) s_{\nu}^{\prime} \Delta_{\nu}^{2}, \quad 2 \leqq k \leqq n-2
$$

and choose

$$
k=1+\left[t^{-1}\right]>t^{-1}>n_{0}(\epsilon)>3
$$

By (3.1), as $(k+1) t<\left(2+t^{-1}\right) t<3 / 2<\pi / 2$,

$$
\begin{equation*}
\left|\sum_{1}^{k-1} s_{\nu-}^{\prime} \Delta_{\nu}^{2}\right|<t^{2} \sum_{1}^{k}\left|s_{\nu}^{\prime}\right|=o\left(t^{2} k^{2}\right)=o(1) \tag{3.7}
\end{equation*}
$$

It remains to estimate $\sum_{k}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}$. We decompose this sum according to the changes of sign of the factors Δ_{ν}^{2}, and write

$$
\sum_{k}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}=\sum_{1}+\sum_{2}+\cdots+\sum_{\rho}
$$

To estimate ρ we note that there are not more changes of sign in the sequence Δ_{ν}^{2} than there are zeros x_{1}, x_{2}, \cdots of $D_{2}\left(x^{-1} \sin x\right)$ in the interval $0<x<(n-1) t$. A simple calculation yields for x_{ν} the estimate

$$
x_{\nu}=(\nu+1) \pi-\psi_{\nu}, \quad 0<\psi_{\nu}<\pi / 3, \nu=1,2,3, \cdots ;
$$

hence,

$$
\rho \pi<x_{\rho}<(n-1) t<\epsilon^{-1} .
$$

But each \sum is in absolute value less than $4 \epsilon^{3} n k^{-1}$ (from (3.2) and (3.3)), and

$$
\epsilon^{3} n k^{-1}<\epsilon^{3} n t<2 \epsilon^{2}
$$

thus

$$
\begin{equation*}
\left|\sum_{k}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}\right|<2 \rho \epsilon^{2}<\epsilon \tag{3.8}
\end{equation*}
$$

Collecting the estimates (3.4) to (3.8) we find

$$
\left|t^{-1} F(t)\right|<\epsilon O(1)+o(1) \quad \text { as } \quad t \downarrow 0 ;
$$

ϵ being arbitrarily small the positive part of Theorem 4 follows. For the negative part we refer to the examples in §5.
4. Proof of Theorem 5. We write, for $\lambda>1$,

$$
\sum_{n+1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}=\sum_{n+1}^{\lambda n}+\sum_{\nu>\lambda n}=R_{1}+R_{2},
$$

say; then by (2.2)

$$
\left|R_{2}\right|<t^{-1} \sum_{\nu>\lambda n} \nu^{-1}\left|a_{\nu}\right|=\frac{1}{\lambda n t} O(1) .
$$

Abel's summation by parts yields

$$
\sum_{1}^{n} a_{\nu} \frac{\sin \nu t}{\nu t}=s_{n} \frac{\sin n t}{n t}+\sum_{1}^{n-1} s_{\nu} \Delta_{\nu}
$$

whence

$$
\sum_{n+1}^{n+k} a_{\nu} \frac{\sin \nu t}{\nu t}=s_{n+k} \frac{\sin (n+k) t}{(n+k) t}-s_{n} \frac{\sin n t}{n t}+\sum_{n}^{n+k-1} s_{\nu} \Delta_{\nu}
$$

We may assume that the limit of s_{n} is zero; given $\epsilon>0$, we choose $n_{0}(\epsilon)$ so that $\left|s_{n}\right|<\epsilon^{3}$ for $n>n_{0}$; then

$$
\left|s_{n+k} \frac{\sin (n+k) t}{(n+k) t}-s_{n} \frac{\sin n t}{n t}\right|<2 \epsilon^{3} \text { for } n>n_{0}(\epsilon) .
$$

We define k by $n+k=[\lambda n]$, thus $k=[\lambda n]-n \leqq(\lambda-1) n$. We subdivide the range $n \leqq \nu<\lambda n$ into consecutive parts in each of which Δ_{ν} has constant sign ; denote the number of subdivisions by σ. Denoting the positive zeros of $u^{-1} \sin u$ by $u_{1}<u_{2}<\cdots$, we find easily $u_{\nu}=\nu \pi+\alpha_{\nu}$, where $0<\alpha_{\nu}<\pi / 2$; the number of zeros in the interval $n t<u<\lambda n t$ is therefore less than $2 \lambda n t / \pi$, and

$$
\sigma \leqq \lambda n t+2
$$

In each section $\left|\sum s_{\nu} \Delta_{\nu}\right|<2 \epsilon^{3}$, hence

$$
\left|\sum_{n}^{n+k-1} s_{\nu} \Delta_{\nu}\right|<2 \epsilon^{3}(2+\lambda n t),
$$

and

$$
\left|R_{1}\right|<2 \epsilon^{3}(3+\lambda n t) .
$$

We now choose $\lambda=1 / \epsilon^{2} n t$, for whatever $n>n_{0}(\epsilon)$ and any $0<t<\pi$, if $\epsilon^{2} n t<1$, and put $\lambda=1$ (that is $R_{1} \equiv 0$) otherwise. In the latter case $\left|\sum_{n+1}^{\infty} a_{\nu} \sin (\nu t) / \nu t\right|<(n t)^{-1} O(1)<\epsilon^{2} O(1)$, while in the first case

$$
\left|\sum_{n+1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}\right|<\epsilon^{2} O(1)+2 \epsilon^{3}\left(3+\frac{1}{\epsilon^{2}}\right)<\epsilon O(1)
$$

for $n>n_{0}(\epsilon)$ and $0<t<\pi$. This proves our theorem.
Note that convergence of $\sum a_{n}$ is a necessary condition for the uniform convergence of $\sum a_{n} \sin (n t) / n t$. For if, for any $\epsilon>0$,

$$
\left|\sum_{n+1}^{n+k} a_{\nu} \frac{\sin \nu t}{\nu t}\right|<\epsilon \quad \text { for } \quad n>n_{0}(\epsilon), \quad k=1,2,3, \cdots, 0<t<\pi,
$$

then, letting $t \downarrow 0$ we get $\left|\sum_{n+1}^{n+k} a_{\nu}\right| \leqq \epsilon$. Moreover we have uniform convergence in the closed interval.

It is shown easily that the assumption (1.3) is equivalent to either of the following conditions: There exists a constant $\lambda>1$ such that

$$
\begin{align*}
& \sum_{n}^{\lambda n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(1) \tag{4.1}\\
& \sum_{1}^{n} \nu\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(n), \text { as } n \rightarrow \infty
\end{align*}
$$

For a more general statement see [7, p. 129].
A consequence of our results is the following theorem:
Theorem 6. If

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \sum_{n}^{\lambda n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=0, \tag{4.3}
\end{equation*}
$$

then A-summability of $\sum a_{n}$ implies uniform convergence of the series $\sum a_{n} \sin (n t) / n t$ in $0<t<\pi$.

Clearly (4.3) implies (4.1), whence (1.3). Now, by Theorem 4, $\sum a_{n}$ is L-summable; furthermore by Theorem 4 of our paper [8] L-summability and (4.3) imply convergence of $\sum a_{n}$. Theorem 6 now follows from Theorem 5.
5. Negative results. We quote the following lemma.

Lemma 4. Let $n \geqq 1$ and

$$
P_{n}(z)=\frac{1}{n}+\frac{z}{n-1}+\cdots+\frac{z^{n-1}}{1}-\frac{z^{n}}{1}-\cdots-\frac{z^{2 n-1}}{n}
$$

then, when $|z| \leqq 1$,

$$
\left|P_{n}(z)\right|<6
$$

For the proof see Fejér [2, pp. 36-37].
Consider the polynomial series $\sum_{1}^{\infty} n^{-2} z^{\lambda_{n}} P_{k_{n}}(z)$, where $\lambda_{1}=1, k_{1}=3$, $2 \lambda_{n}=2^{n^{2}}, 2 k_{n}=\lambda_{n+1}-\lambda_{n}, n \geqq 2$. In view of the above lemma the series converges uniformly in $|z| \leqq 1$, so that the function

$$
F(z)=\sum_{1}^{\infty} n^{-2} z^{\lambda} n P_{k_{n}}(z)
$$

is regular in $|z|<1$ and continuous in $|z| \leqq 1$. The degree of the nth term is $2 k_{n}+\lambda_{n}-1<\lambda_{n+1}$, hence writing out the polynomials explicitly we get a power series, convergent for $|z|<1$,

$$
\begin{equation*}
F(z)=\sum a_{n} z^{n} \tag{5.1}
\end{equation*}
$$

For $|z|=1$ we get a Fourier power series of a continuous function $F\left(e^{i t}\right)$. The structure of P_{n} and the inequality $(n+1)^{-2} \log k_{n}<\log 2$ easily yield

$$
\sum_{n}^{2 n}\left|a_{\nu}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty
$$

But $\sum a_{n}$ diverges, as there are sections $\sum a_{\nu}=n^{-2} \sum_{1}^{k_{n}} 1 / \nu$ which do not tend to zero. On the other hand the series (5.1) is evidently L-summable at every point on $|z|=1$.

Next we define a series $\sum a_{n}$ by putting $s_{n}=1$ for $n=2^{k}, k=0,1$, $2, \cdots$, and $s_{n}=0$ otherwise. Now $n^{-1} \sum_{1}^{n} s_{\nu} \rightarrow 0$, moreover $\sum_{n}^{2 n}\left|a_{\nu}\right| \leqq 3$, hence the series is summable L. But $\sum a_{n}$ diverges, in fact lim sup $\left|a_{n}\right|$ $=1$, and $\sum a_{n} \cos n t$ is not a Fourier series.

Another example of this kind is due to Neder [4].
In contrast Menchoff [3] tried to prove that A-summability and (1.3) imply convergence of $\sum a_{n}$; the error lies in his Lemma 4 which is false. It is based on a false interpretation of an argument used by Landau.

Bibliography

1. A. F. Andersen, Studier over Cesaro's Summabilitetsmetode, Copenhagen, Gjellerup, 1921.
2. L. Fejér, Über Potenzreihen, deren Summe im abgeschlossenen Konvergenzkreise uiberall stetig ist, Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, 1917, pp. 33-50.
3. D. Menchoff, Sur une generalisation d'une thêorème de MM. Hardy et Littlewood, Rec. Math. (Mat. Sbornik) N.S. vol. 3 pp. 367-373.
4. L. Neder, Über Taubersche Bedingungen, Proc. London Math. Soc. (2) vol. 23 (1925) pp. 172-184.
5. O. Szász, Verallgemeinerung eines Littlewoodschen Satzes über Potenzreihen, J. London Math. Soc. vol. 3 (1928) pp. 256-262.
6. ——, Convergence properties of Fourier series, Trans. Amer. Math. Soc. vol. 37 (1935) pp. 483-500.
7. ——, Converse theorems of summability for Dirichlet's series, Trans. Amer. Math. Soc. vol. 39 (1936) pp. 117-130.
8. -, On convergence and summability of trigonometric series, Amer. J. Math. vol. 64 (1942) pp. 575-591.

University of Cincinnati

