
A THEOREM ON GENERALIZED DERIVATIVES 

A. ZYGMUND 

1. General remarks. Suppose that a function f(x)t defined in the 
neighborhood of a point Xo, satisfies a relation 

f(x0 + t) = a0 + ait + a2t
2/2l + • • • 

+ au-xt^/ik ~ 1)! + <*k(t)t*/kl, 

where ao, ai, • • • , ctk-x are independent of /, and the expression 
o)k(t) =<o(#o, /) approaches a finite limit ak as / tends to 0. The function 
ƒ is then said to possess a &th generalized derivative at the point Xo, 
and ak is the value of that derivative. Instead of ak we shall write 
£>kf(xo). I t is clear that the existence of Dkf(x0) implies that of 
Dk-if(xo). 

The existence of D0f(x0) is simply continuity of the function ƒ at 
the point X *•—" XQ» For k = 1 the definition of Dkf(xo) is equivalent to 
that of the ordinary derivative ƒ(fc)(#o). No such equivalence exists 
for higher values of k, for then the existence of Dkf(xo) does not even 
imply continuity of/for X9*xo. However, if/(fc)(#0) exists and is finite, 
then Dkf(x0) also exists and is equal to /(fc)(#0). 

I t is a classical result of Fatou that, if a function f(x) is everywhere 
continuous and, say, of period 2w, then the integral 

fix + t) - ƒ(* - t) Ç * f(x + t) - f(x - /) 
0 / 

f ' ƒ(* + « ~ ƒ ( * - t) J v f 1 d/ = hm I 
J 0 / «-•+0 •/ 0 

exists for almost every x.1 This integral may also be written 

«o(a;, 0 "" wo(#, — 0 
(1.2) f 

v 0 

or 

dt 
0 / 

€ 0 ( # , / ) — € 0 (X , — / ) (1.3) r T ^ L v l i : _ : — - ^ — ^ 
•/ 0 ^ 

if for any # for which Dkf(x) exists we introduce the notation 

co&O, /) = Dkf(x) + ek(x, t) 

(so that e(x, t) tends to 0 with ty for x fixed). 

Received by the editors April 28, 1943. 
1 For this and more general results, see, for example, the author's Trigonometric 

Series, Warsaw, 1935, chap. 7. 
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The convergence of the integral (1.3) may be due either to the 
smallness of the numerator e0(x, t) — e0(xt —/) (which, anyway, tends 
to 0) or to the interference of positive and negative values of the 
integrand. In general, it is the second explanation which is right. For 
there exist continuous functions f(x) such that the integral 

(i.4) r i «(*. o - »(*. - o i a 
J o t 

is infinite for every value of #.2 For what follows it is of interest to 
observe that there exist continuous functions ƒ such that the integral 

€0(x, /) — €0(X, — t) 
(1-5) f 

• / 0 
-dt 

is infinite for every x and for every positive number r, however large.3 

Since €o(x, /) — e0(#, —/) tends to 0 with /, the divergence of (1.5) im
plies the divergence of the integral with any exponent smaller than r. 

The result of Fatou has been generalized in several ways. In par
ticular, Plessner showed that, if 

(i) f(x) is integrable over (0, 2T) and is of period 2ir\ 
(ii) Dkf(x) exists for every point x of a set E of positive measure, 

then the integral 

«*(*f t) — «*(*, — /) , C * €*(*> *) "" c*(*> """ *) 

(1.6) 
o t J o / 

lim ƒ' 
exists for almost every xÇzE.A 

The most interesting is, of course, the behavior of the integrand 
[ek(x, t) — €k(xf —/) ] / / in the neighborhood of / = 0. Since the existence 
of Dkf(xo) implies the boundedness of ƒ in the neighborhood of the 
point Xo, the assumption of integrability of ƒ in Plessner's theorem is 
really no restriction of generality, and is made merely to simplify the 
statement. 

2 See, for example, S. Kaczmarz, Integrale vont Dinischen Typus, Studia Mathe
matica vol. 3 (1931) pp. 189-199, or the author's Trigonometric Series, p. 77. 

Kaczmarz shows that the set of continuous functions ƒ for which the integral (1.4) 
is finite for some x is of the first category in the space of all continuous functions. 

8 The proof does not differ from that of the special case r = 1. 
4 Plessner, Veler das Verhalten anylytischer Funktionen auf dem Rande des Défini-

tionsbereiches, J. Reine Angew. Math. vol. 158 (1927) pp. 219-227. A different proof 
will be found in Marcinkiewicz, Sur le séries de Fourier, Fund. Math. vol. 27 (1936) 
pp. 38-69. 
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Recently, Marcinkiewicz proved the following remarkable result. 
Suppose that a function ƒ(x), of integrable square and of period 2-TT, 
has a finite derivative for every point x of a set E of positive measure. 
Then the integral 

. * [f(* + t)+f(x-t)-2f(x)]* ^ 
ƒ. 

is finite for almost every # £ £ . 5 

Consideration of this integral was suggested by its analogy with an 
important function 

g(0) = | ƒ (1 - P) \F'{pe«) |2<2P j (F(z) regular in | z \ < 1) 

introduced by Littlewood and Paley.6 However, the integral (1.7) 
may also be given a different interpretation. For, if we note that 

ƒ(* + t) + f(x - t) - 2/(*) = *[«i(*, /) - »i(*f - /)] 

= /[ei(tf, /) — 6I(OP, - /)] 

at every point where ƒ'(#) exists, we may write the integral (1.7) in 
the form 

(1.8) I <// = I ; at. 
J o / •/ o 

The finiteness of this integral at almost every point where ƒ ' exists, 
as compared with the fact that there exist continuous functions ƒ such 
that 

[eo(x, t) - e0(x, - / )]2 

at = + oo for every # 
o * 

ƒ 
•J 0 

(cf. (1.5)), indicates that the behavior of the remainders €o(#, /) and 
ei(x, t) is essentially different. I t also raises the problem of the exten
sion of Marcinkiewicz's result to functions with a kth generalized 
derivative. The answer to that problem is given by the following theo
rem, the proof of which is the main object of this note, and which 
reduces to Marcinkiewicz's theorem for jfe = l. 

THEOREM. Suppose that a function f {x) is of the class L2 and of period 
2x, and that the generalized derivative Dkf(x) exists for every point x of 

5 Marcinkiewicz, Sur quelques intégrales du type de Dini% Annales de la Société 
Polonaise de Mathématiques, 1938, pp. 42-50. 

6 J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power se
ries, Proc. London Math. Soc. vol. 42 (1937) pp. 52-89. 
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a set E of positive measure (& = 1, 2, • • • ). Let <*)k{x, t) and €*(#, /) be 
defined by the equations 

fix + /) = Ë Dvf(x)r/v\ + co*(*, 0 * 7 H 

o>k(x> t) = Dkf(x) + ek(x, /), 

jTAew /Ae integral 

(1.9) I at = I at 
0 * " 0 

is finite for almost every # £ £ . 

This result complements the theorem of Plessner stated above, but 
at individual points is not comparable with the latter. It displays a 
new property of the remainder Ü>&(#, /), a property which, unlike that 
in Plessner's theorem, is expressed by the convergence of a positive 
integral. 

2. Auxiliary lemmas. The proof oï the theorem depends on two 
known lemmas.7 

LEMMA 1. Suppose that P is a perfect set of positive measure situated 
in the interval (0, 27r) and continued periodically. Let <f>(x) =<l>p{x) de
note the function which is equal to 0 over P, and is equal to d if x belongs 
to an interval continguous to P and of length d. Then, whatever X > 0, 
the integral* ƒ!„. (<t>*(x+t)/\ t\ x+1)dt is finite for almost every # £ P . 

LEMMA 2. Suppose that a function f{x) of period 2w has a kth gen
eralized derivative for every point x of a set E of positive measure. Then 
f(x)=g(x)+h(x), where 

(i) g(x) has everywhere a continuous kth derivative g(k)(x); 
(ii) g(x) =ƒ(#) in a perfect set P contained in E and of positive meas

ure; 
(iii) except, perhaps, for a few segments A contiguous to P , 

Max | *(*) | ^ MAk, 

with M independent of A.9 

* Both lemmas were used by Marcinkiewicz in his proof of the finiteness of the 
integral (1.7), so that the proof given here of the theorem is partly modelled on 
Marcinkiewicz's argument. 

8 J. Marcinkiewicz, the paper cited in footnote 4. 
9 J. Marcinkiewicz, loc. cit. Marcinkiewicz's argument shows that the set P may 

be of measure arbitrarily close to that of E. 
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Passing to the proof of the theorem, let us assume first that the 
function ƒ(#) has a continuous £th derivative ƒ w ( # ) . To fix the ideas 
we assume that k is even. Then 

(1/2) [f(x + t) - f{x - /) ] = ƒ'(*)/ + f'"(x)fi/3 ! + • • • 

(2.1) +/<*-1>(*)**-V(*- 1)1 

+ (1/2)[«*(*,/) - «*(*, - *)]/*/*!. 

Let us now consider the Fourier series of the function ƒ(x). It may be 
written in the form 

f(x) ~ X) cv(iv)~keivx, 

if we assume, for simplicity, that the constant term of the Fourier 
series is zero. Of course, 

+00 

E k l 2 < + «>. 

and the Fourier series oîf(l)(x), Q^l^k, is obtained by differentiating 
/ times the Fourier series of f(x). Hence, taking into account that for 
fixed /, (l/2)[f(x+t)-f(x-t)]r^^_Jcv(ip)~keivx sin vt, we get (cf. 
(2.D) 

1 
—— [<»k(xy t) - a>jfc(n:f - /)J 
2- #! 

tt I f / 00 s 0')*_1\) 
~ V, ce*"* <t'sinv< - [ivt + - h • • • H I > 

^ (ivt)"\ \ T 3! ^ (Jfe — 1) 1/ƒ 
+00 J 

(2.2) = * ( - l)*'2 T, c^* 
» — . ( » 0 * 

• I sin rt - \vt - h • • • ± > 

+00 

= *(- i)*/2 E c**»bw, 
j / = — o o 

say, where 

f / u* uk~l W / 
Uu) = [ s i n . - ^ - - + • • • ± — TJJ/«*. 

Let us divide (2.2) by /1/2 and apply Parseval's formula to the re
sulting relation. We get 
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[«»(*, t) - «»(*, ~ f)]\ ±5 , .. (k{vt) 
c,\2 

8ir(£!)2 

Integrating both sides with respect to / over the interval (0, x), and 
inverting the order of integration on the left, we see that 

[w*(«, /) — Uk(x, — t)]2 

(k\yJ-r {J» 87r(*!)2J-, l J 0 * 
•dt\ 

(2'3) -£u| . r^>«.£ k | . r^* . 
Let us now observe that the integral 

(2.4) I ^ - d u 
•J 0 

is finite. This follows from the fact that in the neighborhood of u = 0 
the integrand is (url) -0(u2) =0{u) =0 (1 ) , and in the neighborhood 
of u = + oo it is ur1 • 0(u2k~2)u~2k = 0(w-8). 

Since X) |cJ 2 < + °°, the right-hand side of (2.3) is finite, so that 
the integral 

'T [«*(*, *) ~ wk(x, - t)]2 

a/ X o t 

is finite for almost every x. 
If & is odd, the argument is similar. Instead of (2.1) we consider 

the formula 

(1/2) [f(x + * ) + ƒ ( * - / ) ] = f{x) +f"(x)t*/2l + • • • 

+ / (*-1 )(*) '*"1 /(* - 1)! 

+ (1/2) [«*(*,/) - « * ( * , - / ) ] * * / * ! 

and we still get (2.3), where now 

&(«) = [cos « - (1 - u2/2l + • • • ± «*-V(* - 1)0]*"* 

and the integral (2.4) is again finite. Thus the theorem is proved if 
f(k)(x) exists everywhere and is continuous. 

3. Proof of the theorem. In order to complete the proof of the theo
rem, let us assume that there is a periodic function ƒ £ L 2 having a 
generalized derivative Dkf{x) a t every point of a set E of positive 
measure, and such that the integral (1.9) diverges everywhere in E. 
Let us now consider the decomposition ƒ = £ + & of Lemma 2. The 
function g having everywhere a continuous derivative gw(x), the cor-
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responding integral (1.9) is convergent almost everywhere, and so al
most everywhere in E. If we could prove that the integral (1.9) 
corresponding to the function h is finite in a set E' contained in E 
and of positive measure, it would follow that the integral (1.9) for 
the function ƒ is convergent almost everywhere in £ ' , contrary to the 
assumption that it is divergent a t every point of E. That contradic
tion would prove the theorem. 

Let us therefore consider the function h of Lemma 2. That function 
vanishes over a perfect set PC.E. Part (iii) of Lemma 2 asserts that 
for all, except perhaps a finite number, of the intervals A contiguous 
t o P , 

(3.1) | h(x)\ g M<l>k(x)y xEà. 

This inequality is also valid for the points of the set P , since both 
h(x) and <j>(x) vanish over P . 

Let Xo be any point of density of P (hence x0 is not an end point 
of any interval contiguous to P) . From the definition of the function 
<£(#) it follows that </>(xo+t) =o(\t\) as /—>0. Since (3.1) is valid in a 
neighborhood (XQ~-Ô, XQ+Ô) of #o, we see that h(xo+t)=o(\t\k) as 
/—>0. Hence the function cok(xo, t) corresponding to h(x) is simply 
klh(xo+t)t~k. Thus, in our case, 

ƒ. 
8 [o>k(xQl t) ~ COfc(#o, — t)}2 

8 o>k(x0, 0 , „ Cô °>k(xo, — t) 
at 

J o t J o 

^ h2(x0 + t) 

r+ö </>™(xQ + t) 
< 2M2(£!)2 I - J V ~dt. 

J_a \t\2k+1 

dt 

+ * 02*(*O + t) 

If, therefore, E' is the set of points of density of P for which the in
tegral 

' * <t>2k(x + t) 
- dt ƒ.' | t\2k+l 

is finite, the integral (1.9) corresponding to the function h converges 
at every point of E'. This completes the proof of the theorem, since 
the set E' is obviously of positive measure. 

M T . HOLYOKE COLLEGE 


