MATRIX PRODUCTS OF MATRIX POWERS

R. F. CLIPPINGER

1. Introduction. Let $m n$-by- n matrices, A_{k}, of complex constants, $a_{i j k}(i, j=1,2, \cdots, n ; k=1,2, \cdots, m)$, be given. We shall denote by \mathcal{L} the set of all matrices,

$$
A(t)=\sum_{i=1}^{m} \rho_{i}(t) A_{i},
$$

where $\rho_{i}(t)(i=1,2, \cdots, m)$ are arbitrary, non-negative, summable functions of the real variable t on the interval $T, a \leqq t \leqq b$. We shall call $\mathfrak{J}, \mathcal{S}$, or \mathcal{X} the subsets of \mathcal{L} obtained by restricting the functions $\rho_{i}(t)$ to polynomial functions, step functions, or step functions which are all zero except one. Since, in each case, the elements of $A(t)$ are summable functions of t on T, it follows that, on T, there exists a unique, absolutely continuous matrix solution, ${ }^{1} Y(t)$, of the linear, matrix differential equation and initial condition:

$$
\begin{equation*}
d Y(t) / d t=Y(t) A(t), \quad Y(a)=E \tag{1.1}
\end{equation*}
$$

where E is the n-by- n unit matrix. We shall denote by λ, ι, σ or ξ the set of matrices, $Y(t)$, which are particular values of solutions of (1.1), where $A(t)$ is an arbitrary matrix of $\mathcal{L}, \mathfrak{J}, \mathcal{S}$, or \mathcal{X}, respectively, and t is on T.

If A is a matrix with elements $a_{i j}$, let the absolute value of A and the exponential and natural logarithm of A be defined ${ }^{2}$ by the equations:

$$
\begin{aligned}
|A| & =\left[\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right]^{1 / 2} \\
\exp A & =\sum_{i=0}^{\infty} A^{i} / i! \\
\log A & =\sum_{i=1}^{\infty}(-1)^{i-1}(A-E)^{i} / i, \quad \text { if } \quad|A-E|<1
\end{aligned}
$$

[^0]J. v. Neumann ${ }^{8}$ has shown that if j is an integer and if $|A-E|<1$, then
\[

$$
\begin{equation*}
A^{j}=\exp [j \log A] \tag{1.2}
\end{equation*}
$$

\]

Hence, for any α, we define the α power function of A by the equation

$$
A^{\alpha}=\exp (\alpha \log A), \quad \text { if } \quad|A-E|<1
$$

If $\left|\exp A_{i}-E\right|<1(i=1,2, \cdots, m)$, we define μ as the set of matrix products of matrix powers,

$$
\prod_{j=1}^{J} \prod_{i=1}^{m}\left(\exp A_{i}\right)^{\alpha_{i j}},
$$

where the $\alpha_{i j}$ are arbitrary non-negative numbers.
Let us identify an n-by- n matrix, B, of complex numbers with the point in $2 n^{2}$-Euclidean space, whose coordinates are the real and imaginary parts of the elements of B. The distance between two points B_{1} and B_{2} may be defined as $\left|B_{1}-B_{2}\right|$. A set, β, of matrices, B, is then also a point set whose closure we denote by $\bar{\beta}$.

It is the purpose of this paper to show that the sets $\bar{\lambda}, \bar{\imath}, \bar{\sigma}, \bar{\xi}$ and, if it exists, $\bar{\mu}$, are identical.

2. Principal theorems.

Theorem 2.1. The sets $\bar{\lambda}$ and $\bar{\sigma}$, defined above, are identical.

Since any step function on T is summable on T, it follows that $\sigma \subset \lambda$. Suppose $A_{\mathrm{L}}(t)$ is a matrix of class \mathcal{L}, with coefficients $\rho_{i}(t)$. Then, for all positive δ, there exists a matrix, A_{s}, of class S with coefficients $r_{i}(t)$ such that

$$
\sum_{k=1}^{m} \int_{a}^{b}\left|\rho_{k}(t)-r_{k}(t)\right|\left|a_{i j k}\right| d t<\delta \quad(i, j=1,2, \cdots, n)
$$

Let the corresponding solutions of (1.1) be $Y_{\mathrm{L}}(t)$ and $Y_{\mathrm{B}}(t)$. Since $Y(t)$ is a uniformly continuous functional ${ }^{4}$ of $A(t)$, it follows that, given any positive number ϵ, δ may be so chosen that

$$
Y_{\mathrm{L}}(t)-Y_{\mathrm{s}}(t) \ll \epsilon ;
$$

that is, the absolute value of each element of the matrix on the left is less than ϵ. Hence $\lambda \subset \bar{\sigma}$.

[^1]Theorem 2.2. The sets $\bar{\sigma}$ and $\bar{\xi}$ are identical.
Clearly $\xi \subset \sigma$.
J. v. Neumann ${ }^{5}$ has shown that if $|A|,|B|<(1 / 2) \log (3 / 2)$, then

$$
\log [\exp A \exp B]=A+B+O(|A||B|)
$$

This equation, by induction, leads to the generalized equation:

$$
\begin{equation*}
\log \prod_{i=1}^{m} \exp A_{i}=\sum_{i=1}^{m} A_{i}+\sum_{i, j=1}^{m} O\left(\left|A_{i}\right|\left|A_{j}\right|\right) \tag{2.1}
\end{equation*}
$$

if $\left|A_{i}\right|<\delta(m)$, where it suffices to take $\delta(m)<[\log (3 / 2)] / 2 n(m-1)$. To this we may add the equation,

$$
\begin{equation*}
\exp (A+B)=\exp A+O(|B|) \tag{2.2}
\end{equation*}
$$

which follows immediately from the definition of $\exp (A+B)$.
Lemma 2.1. If A is a matrix of constants, the matrix,

$$
Y(t)=Y_{0} \exp [(t-a) A]
$$

is the solution of the linear, matrix differential equation and initial condition

$$
d Y(t) / d t=Y(t) A, \quad Y(a)=Y_{0}
$$

The series $\sum_{j=0}^{\infty}(t-a)^{i} A^{i} / j$ is uniformly convergent ${ }^{6}$ on any interval $|t-a|<N$, hence the lemma may be established by term-by-term differentiation.

Lemma 2.2. If $A(t)$ is a matrix of summable functions, and if $A(t) \ll(M)$ on T, the solution, $Y(t)$, of equation (1.1) satisfies the inequality

$$
Y(t)-E \ll(1 / n[\exp M n(t-a)-1]) \text { on } T .
$$

Slight modifications of the proof of the existence theorem given by G. D. Birkhoff and R. E. Langer ${ }^{7}$ yield this lemma.

Lemma 2.3. If $B_{1}, B_{2}, \cdots, B_{m}$ are square matrices,

$$
\lim _{j \rightarrow \infty}\left[\prod_{i=1}^{m} \exp \left(B_{i} / j\right)\right]^{j}=\exp \sum_{i=1}^{m} B_{i}
$$

[^2]Let $P_{j}=\prod_{i=1}^{m} \exp \left(B_{i} / j\right)$. By Lemma 2.1, P_{j} is the solution for $t=1$ of the differential equation

$$
d Y(t) / d t=Y(t) \sum_{i=1}^{m} \rho_{i}(t) B_{i}, \quad Y(0)=E
$$

where the $\rho_{i}(t)$ are all zero except on the interval $(i-1) / m \leqq t \leqq i / m$ where $\rho_{i}(t)=m / j(i=1,2, \cdots, m)$. Let B be an upper bound to the absolute values of the elements of $m B_{i}$. Then $\sum_{i=1}^{m} \rho_{i}(t) B_{i} \ll(B / j)$. By Lemma $2.2, j$ may be chosen so large that $\left|P_{j}-E\right|<1$ and $\left|B_{i} / j\right|<[\log (3 / 2)] / 2 n(m-1)$. Hence by (1.2)

$$
P_{i}=\exp \left[j \log \prod_{i=1}^{m} \exp \left(B_{i} / j\right)\right]
$$

From (2.1) it follows that

$$
j \log \prod_{i=1}^{m} \exp \left(B_{i} / j\right)=\sum_{i=1}^{m} B_{i}+O(1 / j)
$$

and, finally, (2.2) implies that

$$
P_{j}=\exp \sum_{i=1}^{m} B_{i}+O(1 / j)
$$

This establishes Lemma 2.3.
Lemma 2.4. If each of $K n$-by-n matrices, C_{k}, is the limit of a sequence, $\left\{C_{k j}\right\}$, of matrices, then

$$
\lim _{j \rightarrow \infty} \prod_{k=1}^{K} C_{k j}=\prod_{k=1}^{K} C_{k}
$$

This lemma may be established easily by induction.
To prove that $\sigma \subset \bar{\xi}$, let Y_{s} be a matrix of σ; then Y_{s} is a product of a finite number of matrices of the form

$$
C_{k}=\exp \sum_{i=1}^{m} \alpha_{i k} A_{i}
$$

and by Lemma 2.3, each C_{k} is a limit of matrices

$$
C_{k j}=\left[\prod_{i=1}^{m} \exp \left(\alpha_{i k} A_{i} / j\right)\right]^{j}
$$

Hence, by Lemma 2.4, Y_{S} is a limit of matrices of ξ and therefore Y_{S} is a member of ξ.

Corollary to Theorem 2.2. If $\left|\exp A_{i}-E\right|<1(i=1,2, \cdots ; m)$, then $\xi=\mu$.

To prove this, we need only observe that, by definition,

$$
\left(\exp A_{i}\right)^{\alpha_{i k} / j}=\exp \left(\alpha_{i k} A_{i} / j\right) \quad \text { if } \quad\left|\exp A_{i}-E\right|<1
$$

Theorem 2.3. The sets $\bar{\lambda}$ and $\bar{\imath}$ are identical.
Since $\Im \subset \mathcal{L}, \iota \subset \lambda$. Given a matrix in \mathcal{L} with coefficients $\rho_{i}(t)$, there exists a matrix in J, with coefficients $\mu_{i}(t)$, such that

$$
\sum_{k=1}^{m} \int_{a}^{b}\left|\rho_{k}(t)-\mu_{k}(t)\right|\left|a_{i j k}\right| d t
$$

is arbitrarily small $(i, j=1,2, \cdots, n)$. Therefore $^{8} \iota \subset \bar{\lambda}$.
Carnegie Institute of Technology
${ }^{8}$ See W. M. Whyburn, Functional properties of the solutions of differential systems Loc. cit.

[^0]: Presented to the Society, April 18, 1942; received by the editors April 4, 1943, and, in revised form, August 18, 1943. The author wishes to thank Professor G. D. Birkhoff for suggestions which led to this paper.
 ${ }^{1}$ See W. M. Whyburn, On the fundamental existence theorems for differential systems. Ann. of Math. (2) vol. 30 (1928-29) p. 31. We observe that equations (1.1) are equivalent to a system of $2 n$ real, linear, first order differential equations satisfying all the hypotheses of this theorem.
 ${ }^{2}$ See J. v. Neumann, Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen. Math. Zeit. vol. 30 (1929) pp. 6, 7.

[^1]: ${ }^{3}$ Loc. cit. pp. 8, 12.
 ${ }^{4}$ By this we mean that the elements of $Y(t)$ are uniformly continuous functionals of the elements of $A(t)$. See W. M. Whyburn, Functional properties of the solutions of differential systems. Trans. Amer. Math. Soc. vol. 32 (1930) p. 508.

[^2]: ${ }^{5}$ Loc. cit. pp. 13-15.
 ${ }^{6}$ See J. v. Neumann, loc. cit. p. 7.
 ${ }^{7}$ The boundary problems and developments associated with a system of ordinary linear differential equations of the first order. Proceedings of the American Academy of Arts and Sciences vol. 58 (1922-1923) pp. 59-63.

