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1. The finite sine transformation of the convolution. The finite sine 
transformation and the finite cosine transformation of U(x) with re
spect to x are defined2 by 

u8(n) = I 
J o 

U(x) sin nxdx = S{ U(x)} 
' o 

and 

uc(n) = I U(x) cos nxdx = C{ U(x)}, 
J o 

respectively.8 In particular, S{ U') = — nC{ U}> and S{ U") 
= -n[(-l)nU(T)- U(0)]-n*S{ U}. Further, if U(x) and [ / ' ( ^van
ish at the end points of the interval (0,7r), then S{ U" ) = - n 2 S { U), 
and C{U'}=nS{U}. 

The convolution Ui * C/JJ, or Faltung,2 of the two functions Ui(x), 
— 2TSX^2W, and U2(x), — TT^X^T, is defined as follows: 

Ux*U* = ƒ Ui(x - QUtiQdi. 

I t is evident that the convolution of two even functions is an even 
function, that the convolution of two odd functions is an even func
tion, and that the convolution of an odd function and an even func
tion is an odd function. 

The following theorem is proved by Kniess :4 

THEOREM. If U\{x), — IT^X^ITT, and Uz(x), —W^X^T, are 
bounded and integratie, if TJ\ is odd and periodic with period 2T, and 
if U2 is even, then 

Presented to the Society, September 10, 1942; received by the editors March 8, 
1944. 

1 The author wishes to thank the referee and Professor R. V. Churchill for many 
valuable suggestions. 

2 G. Doetsch, Integration von Differentialgleichungen vermiUels der endlichen 
Fourier Transformation, Math. Ann. vol. 112 (1935) pp. 52-68. 

3 The lower case letters will be used to signify the transforms of the functions desig
nated by the corresponding capital letters. Instead of using the symbols us(n) and 
uc(n) we shall use u(n) for both, whenever it is evident which one is meant. 

4 Hans Kniess, Lösung von Randwertproblemen bei Systemen gewöhnlicher Differen
tialgleichungen vermittels der endlichen Fourier Transformation, Math. Zeit. vol. 44 
(1938) pp. 266-291. 
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S{Ui/2*U%} =5{C/ i}c{ t / 2 } . 

2. Temperature distribution in a bar. Consider a cylindrical bar of 
length x which has a diameter so small that the variation of tempera
ture U(x> t) over every cross section can be neglected. The thermal 
conductivity of the bar is a function of the time. There is a continuous 
internal source of heat along the bar and the initial temperature at 
each point of the bar is given by a prescribed function. The rate of 
loss of heat through the surface at each point is proportional to the 
temperature at that point. The temperatures at the ends # = 0 and 
#=7T are determined by prescribed functions ôf /. 

The boundary value problem for the temperature i7(#, t) can be 
written 

L(U) S3 dU/dt - Ci(t)d2U/dx2 + C2(t)U = P(x, *), 

0 < X <7T, t> 0, 
(A) 

U(+ 0, t) = C,(*), U(ir - 0, t) = C4(*), t > 0, 
U(x, + 0) = F(x), 0 < x < T. 

The prescribed functions P , F, Ci, C2, C3, and C4 are assumed to sat
isfy the following conditions: P and its first three derivatives with 
respect to x are continuous functions of x and t for all values of x and t 
m0^x^7T,t^0\ F and its first three derivatives with respect to x are 
continuous in x for 0 ^x ^w ; P , P, and their first two derivatives with 
respect to x vanish at the end points of the interval (0, T) ; C\ and C2 
are positive and continuous for 2 ^ 0 ; CI and Ci are continuous for 
* à 0 ; C3(0) = C4(0)=0, 

3. Resolution of temperature problem. I t is obvious that the solu
tion of our boundary value problem can be written 

(1) U(x, t) = Ui{xy t) + U2(%, t) + Uz(x, t) + Ui(x, t), 

where Ui9 U%, Ï73, and E/4 are solutions of the problems: 

/ L{Ux)=P{x,t), I7 i (+O,0«O, 
(Ai) 

UI(TT - 0 , 0 = 0 , Ui(x, + 0 ) = 0 ; 

L ( [ / 2 )=0 , f /2(+0, /) = C3(0, 
(At) 

C/2(7r~0, 0 = 0 , Z7.(*f + 0 ) = 0 ; 

, N L(C/3)=0, f / 3 ( + 0 , 0 = 0 , 
(A3) 

C/3(7r-0, 0 = C4(0, J73(*, + 0 ) = 0 ; 
and 
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L(*74)=0, £ / 4 (+(M)=0 , 
(A4) 

Uiiir-O, t) = 0, UA{X, + 0 ) - F ( * ) . 

If in problem (A2) we replace Cs(0 by C4W and # by w—x, then 
CMtf, 0 reduces to Uz(x, t). For this reason we shall not have to con
sider problem (A3) as a problem to be solved. 

The finite sine transformation with respect to x applied to the first 
and fourth equations in problems (Ai), (A2), and (A4) transforms each 
of these boundary value problems into a problem in linear ordinary 
differential equations of the first order which can be written as fol
lows: 

d[ui(n, t)]/dt + [n*d(t) + Ci(*)]«i(», t) « pin, t)% 

1 «i(n, + 0) = 0; 

d[u2(n, t)]/dt + [n2d(t) + Ct(t) - nCi(t)C*(t)]u%(n, t) - 0, 
2) u2(n, + 0) « 0 ; 

and 

(A/) d[uA(n, t)]/dt + [n2d(t) + C2(t)]ut{n, t) = Q, w4(», + 0) « ƒ(»). 

The solutions Ui(n, t), u2(n, t), and ui(n, t) of the problems (Ai ), 
(A2'), and (A4'), respectively, are given as follows: 

Ui(n, t) = I p(n, r) exp [ - wVi(*, r)] exp [ - cr2(t, r)]dr, 
J 0 

u2(n, i) « I C«(T)CI(T) exp [ - wVi(*, r)] exp [ - <r2(t, r)]dr, 
J 0 

and 
w4(n, /) = /(w) exp [ - n%(t)] exp [— s2(t)]t 

where we have made the definitions: Si(t) = /oCi(£)d£, <Ti{t, T )=S*( J ) 

- $ < ( T ) , 0 ^ T ^ * . 

I t will now be shown that each of the problems (Ai), (A2), and (A4) 
can be further resolved into a single simple boundary value problem. 
Tha t is to say, each of the solutions ui, u2, and u* can be expressed in 
terms of u0(n, t), the transform of Uo(x, t)t which is the solution of the 
following boundary value problem: 

dUo/dt « d2Uo/dx\ 0 < x < ir, t > 0, 

(B) Uo(+ 0, /) - 0, Uo(ir - 0, t) - 0, t> 0, 

Uo(x, + 0) « Or - x)/v, 0 < * < v. 
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Making a formal application of the finite sine transformation to 
(B) gives 

d[uo(n, t)]/dt + n2u0(nt t) = 0, u0(n, + 0) « 1/n. 

The solution of this transformed problem is 

uo(n, t) s» {l/n) exp (— nH). 

From this solution we obtain the following identities: 

exp [— ft2Si(t)] = nuo[nt Si(t)], 

n exp [— n2<xi(t, r)]Ci(r) = duo[n, cri(/, r)]/dr, 

n exp [ - n2Si(t)]Ci(t) « - dw0[w, *i(/)]/d*. 

The transforms «i(w, /), W2(w, t), and ^(w, 0 can now be expressed 
as functions of u0(n, t) as follows: 

ui{n, t) «= I exp [- <r2(t, r)]p(n, r)nu0[n, <ri(tf r)]drt 
Jo 

/

• ' d 

CZ{T) exp [— <r2(/, r)] — Uo[n, <n(t} r)]dr, 
o or 

and 
W4(w, 0 = exp [— s2(t)]f(n)nuo[n, Si(t)]. 

If the convolution theorem is now applied to U\{n, t) and w4(w, /), a 
formal inverse sine transformation of Wi(w, £)> u2(n, t), and ^(w, 2) 
can be performed. The result can be written 

1 r' 
Ui(x, t) = — I exp [- <r2(t, r)] 

2 J o 

(2) • f ' P ( * - J, r) — Uo fc €T!(/f r) ]<*&Jrf 

/

> * d 

Cz(r) exp [— (r2(/, r ) ] — J70[*, <ri(/, r)]dr, 
o or and 

CM*, 0 - — exp [ - j ,(0] f *F(* - Ô — ^ofe 5i(<)]«, 
2 J —T #£ of 

where P and F are the odd, periodic extensions of period 2T of the 
original functions P and F, respectively, and d Uo/d^ is the even ex-
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tension of the original function d Uo/d%. The solution Uz of problem 
(A3) can be written 

d(r) exp [ — <r2(ti r ) ] — UO[T — », (Ti(/, r)]rfr. 
0 dr 

THEOREM. The general temperature problem (A) can be resolved into 
the solution of the simple temperature problem (B) by formulas (1) and 
(2). That is, 

U(x, t) = — f exp [ - *,(*, T)] f P{% - {, T) — Z7ofc <n(*, r)]<*#r 
2 J o J - * df 

C4(r) exp [ - <r2(*, T)] — I7o[ir - *, <ri(*, T)]</T 
0 or 

(3) 
+ I CZ{T) exp [ - <72(/, r)] — [/0[#, *i(*, T)]JT 

Jo or 

+ — exp [ - s2(t)] f *F(x - Ö — ffofc *(*)]#. 
2 J - , d£ 

4. Verification of resolution. Instead of verifying directly that the 
function given by (3) is a solution of problem (A), we shall take up 
separately the verifications of the solutions Uu U2> and Ut of the 
problems (Ai), (A2), and (A4), respectively. 

Consider problem (Ai) and its solution Ui(xt t) given by (2). By 
making use of the definitions of extensions, we can write U\(x, t) as 
follows: 

1 r « 
Ui(xf i) = — I exp ( - <r2) 

2 J 0 

• f T [P(x + S,T) + P(X - {, r)] — Uo(£, <n)dkdr. 
J o dt 

d 

0 7s 

Integration by parts with respect to £ yields 

1 / • « 
(a) Ï7i(ff, /) = — I exp (— <r2)H(x, t, r)dr> 

2 J 0 
where 

(b) H(x, t, r) « f *G(*, {, r) tfofe, <n(/, r ) ] # , 
J 0 

and 
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(c) G(x, S, r ) = \ ~ P(x - $, r) - -^ P ( x + £, r ) l . 
Lax ax J 

The function £70(x, /), the solution of problem (B), can be found 
by an inverse sine transformation of u0(nt t), or by the usual meth
ods.5 However, this problem is a special case of a more general prob
lem solved by R. V. Churchill6 by means of the Laplace transforma
tion. The following properties of Uo(x, t) can be derived from his 
paper, and are given here without the proofs: Z70(x, t) is of order 
0[exp (7/)] uniformly in xf O ^ X ^ T , for all t^O, for some Y > 0 ; 

Uo(x, t) is continuous in (x, /) when / ^ 0 , 0 < x ^ 7 r ; Z7o, dUo/dx, 
d2U0/dx2, and dU0/dt are continuous in (x, t) for each / > 0 , 0gx^J7r; 
|d£70/c)/| is bounded when / ^ 0 and x is in the interval 0<x0Sx^ir. 

That H(x, /, r ) , dH(x, t, r)/dtt and d2H(x, t, r)/dx2 are continuous 
functions of (x, t, r) in R', O ^ x ^ x , O ^ r g / , can be established as 
follows : 

F^GUo is a continuous function of (x, t, r, £) = (p, £) in the closed 
region R":R', S I ^ ^ T T , o i>0 . Hence \AF\ < C I for |Ap| <Ô' in 2Î". 
F is uniformly bounded and integrable in the closed region R,n:R\ 
0 ^ £ ^ 81. Hence | F\ <M in jR'". So that 

I JT(p + Ap) - H(p) I £ f * I AF| rf£ + ÇX I AF| ^ 
•/ 0 •/ «! 

g MÔl + €I(T ~ h) < € 

for I Ap| <S < 8 ' , p in i?'. This establishes the continuity of JEf(x, /, r ) . 
Consider 

-^- H(x, t,r) =~- f TG(x, £, r) tfofc *i{t, r ) ] # . 
ot ot J 0 

The derivative of the integral with respect to / yields formally 

— H(x, t,r) = f TG(x, S, r) — Uo[ï, *i(t9 r ) ] # 
ot Jo ot 

- Ci(0 f G(x, & r) — ff0(E, <n)#, 

(d) — #(x , /, r) - Ci(0 f T —rG(x, £, r)ff0ft, <n)^. 
dt J 0 d£2 

6 R. V. Churchill, Fourier series and boundary value problems. New York, McGraw-
Hill Book Company, 1941, p. 102. 

6 R. V. Churchill, On the problem of températures in a non-homogeneous bar with 
discontinuous initial temperatures, Amer. J. Math. vol. 61 (1939) pp. 651-664. 
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This integral is of the type H(x, t, T) , therefore dH(x, t, r)/dt is a con
tinuous function of (x, t, r) in R', provided dH(x, t, t)/dt is defined 
by (d). The continuity of d2H(x, tt r)/ax2 can be established by the 
same type of argument. 

Consider Ui(x, t) as defined by formula (a). Since the integrand is 
a bounded, integrable function of r for all / ^ 0 , the limit of Ui{x, t) 
as t approaches zero exists and U\(xy + 0 ) = 0 . 

Since G(x, £, r ) , in (c), vanishes when x approaches both end points 
of (0, TT), it follows that ü ( 0 , t, r) =H(wt t, r) = 0. Hence Ui(+0, 0 = 0 
and Z7i(7r-0, 0 = 0 . 

To show that Ui(x, t) satisfies the differential equation of problem 
(Ai), we apply Leibnitz' rule to Ui(x, t), in (a), and find that 

à 1 
— Ui(x, t) = — lim exp ( — o-2)fl

r(x, t, r) 
dt 2 *-+* 

1 C* à 
+ — I — {exp [- <r2(t, T)]H(X, t, r))dr 

2 J o àt 

- — f 'G(X, t, 01/oft, 0)d$ - C^Uxix, t) 
2 J o 

1 f* d 
+ — I exp ( - a2) — H(x, t, r)dr. 

2 J o àt 
Since d2G/dx2=*ô2G/d£2, we have from (d) that dH/dt = &d2H/dx2. 
Hence 

à 
Ui(x, t) = P(*f t) - C*(t)Ui(x, t) 

àt 
t 52 

so that 

I f * à2 

+ C^) V I exP ( - *à 7 ^ #(*> *> T)rfr> 2 J o d#2 

— ffi(*f 0 - P(X, t) - C2(t)Ui(x, t) + Ci(0 — ; C/i(^, /), 
àt àx2 

0 <x <ir,t>0. 

Consider problem (A2) and its solution J72(^, 0 given by (2). Since 
Cz(0) = 0, integration by parts of U%(x, t) yields 

U2(xt t) = C3(/)((7T - *) /*) 
(e) 

ƒ. 
t 

exp [ - <T2(t, r)]Uo[x, <n(t, r)]{C,'(T) + C I ( T ) C , ( T ) }<*r, 



dr 
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so that U2(x, + 0 ) = 0 , 0<#<7T. 
Now I J70| < € , w h e n O < ^ < S / , 0 ^ r ^ / - e " ; | C 7 0 | <\(v-x)/ir+€'"\ 

when 0<x<Ô", t-e"£r£t; so that if E ^ e x p (-<?*)[Ci +C2C3], 
I max EI =ikf, then 

ƒ
» < 

EUodr 
0 

I /» f—-e" 

I Me'rfr 

•Jo 

I J t-e" 

g | C i | * + J f ( * - c " y + J f | l + e ' " |c ' ' < € 

for 0 < x < Ô , 8 < S ' , 8", 0<t^T. Hence !72(+0, /) = C3(/), *>0. The 
same type of argument gives U2(T — 0, 0 = 0 , since Z70(ir —0, J )=0, 
*>0. 

In (e), for / > 0 , 0<#<7r , first we take the derivative of U2{x> t) 
with respect to tf and then we take the second derivative of U2(x, t) 
with respect to x. We find that 

dU2(x, t)/dt = C,'(*)((* - %)/*) - ((TT - * ) / T ) [ C , ' ( * ) + C2(/)C8(*)] 

+ C2(t) f e x p C - c r O ^ o C ^ ^ O l C / W + C W C W l i r 
v 0 

- Ci(Ô f exp ( - <r%)(dUo(x, <n)/dcr,) [ C (T) + C2(r)C3(r)]dr, 

and 

d2i720, /)/d*2 

= - f exp ( - <r2)(d
2*7o(tf, <7i)/d*2) [C3'(r) + C2{r)Cz{r)]dr. 

J 0 

We form the partial differential expression L(U2): 

L{U2) = di/2/d* - C1(i)d
2U2/dx2 + C2(t)U2 

= Ci(/) f exp ( - <r0 [d2£/0(#, cri)/dx2 

° ~ d*7o(*, crO/d^] [C3' + C2Cz]dr. 

Hence L(Z72)=0, since d2Uo(x, <ri)/dx2—dUo(x, <ri)/â<ri = 0, 0<#<7r , 
/ > 0 . 
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The verification of Ui(%> t) can be patterned after that used for 
Ui(x, t) and, therefore, will not be discussed here. 

This concludes the verification of the resolution of problem (A). 
The restrictions placed upon the functions F(x) and P(#, t) are un
necessarily severe. They were made in order to be able to condense 
the forms of the solutions. The same applies to the condition that 
C3(0) = &(fi) = 0. The verification of Uz and Ut can be made without 
them. 

5. Temperature distribution in a cube. The method of the previous 
problem can be extended to a general heat flow problem in three di
mensions; the same problem (B) is used in the resolution. The verifi
cation of the resolution of this problem is similar to that of the first 
problem and is omitted here. 

The interior of a cube7 of edge length T is filled with a homo
geneous, isotropic medium. The temperatures on the faces of the cube 
are maintained at prescribed values, depending upon the space co
ordinates of the point and upon the time. There is a continuous source 
of heat in the medium whose thermal conductivity may be a function 
of the time. Further, at each point of the medium there is a sink of 
heat which may be a function of the time and which is proportional 
to the temperature at that point. The initial temperature distribution 
is given by a prescribed function. We take a corner of the cube as 
origin and the three mutually perpendicular edges as coordinate axes 
to locate a point P: (#i, x%> #3) of the cube. 

Let us consider the distribution of temperatures U(P, t) in the in
terior of such a cube. Z7(P, t) satisfies the conditions: 

4: U(P, /)V E C , ( / ) - U(P, t) - C<(t)U(P, t) = F(P, t), 
ot «—I ox j 

* 0 < Xi < 7T, / > 0, 

U(0, #2,3, /) = Gl(#2,S, fit U(lT9 #2,8, /) = ^(#2,3, t), 0 ^ #2,3 ^ 7T, / > 0, 

Z7(0, #1,3, t) = G3(#l,3, /) , *7(TT, #1,3, t) = G*(#l,3, t), 0 ^ #1,3 ^ 7T, / > 0, 

£7(0, #1,2, /) = G5(#l,2, / ) , U(w, #1,2, /) = G6(#l,2, / ) , 0 S #1.2 £ TT, t > 0, 

U(P, 0) - H(P), 0 < #/ < x (j « 1, 2, 3). 

Problem (B), which is a problem in heat conduction in one dimension, 
is sufficient to make a formal resolution of this very general problem of 
heat conduction in three dimensions. 

7 Compare with problem discussed by Carslaw: H. S. Carslaw, Introduction to the 
mathematical theory of the conduction of heat in solids, London, Macmillan and Com
pany, 1921, p. 108. 
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If we use the same system of abbreviations as that used before, the 
solution U(P, t) can be expressed as follows: 

U(P, t) - — f exp ( - <n)fff V ( P , , r ) H ~T ^oft* **)%& 

— exp (- *) f f VE(Pi) II — tfott* *,)#/ 
ö J J J „v j^i d^j + 8 

+ — Z^ I exp ( - cr4) — £/"o(x,-, o-j) 
4 y-iJo or 

1 3 /•« d 
+ — Z , I exp (~ o-4) — £/O(TT - «ƒ, o-/) 

4 ,»i J o or 

• f f GVCÖ/.T) I I — r l7o(€*, cr*)d€*drf 

where (Pj)ss(#i —£i, #2--£2, #3 —£3) and Qj is of the form («4 — ^ , 
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