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1. Introduction. In a recent paper by Boas, Boas and Levinson [l ]l 

two sets of sufficient conditions were given for the existence of 
lim^oo y'(x) when y(x) satisfies the differential equation 

(1:1) y" + A(x)y = B{x). 

We propose in this paper to use their methods and to generalize their 
results to the nth order linear differential equation 

n 

(1:2) ?<»> + J^Ai(x)y<-n-» = B(x), 
t - i 

and to obtain sufficient conditions for 

(1:3) lim y(n-»(x) 

to exist. In case w = 2, Ai(x) = 0 and A*{x) *=A(x), these conditions re­
duce to those in [ l] . 

2, Statements of the theorems. In §4 we shall prove the following 
theorem. 

THEOREM I. If Ai(x) (* = 1, • • • , n) and B(x) are continuous on 
0 Sx < oo, and if the integrals 

(2:1) f x*-11 Ai(x) \dx (i - 1, • • • , n), 
J o 

ƒi oo 

B(x)dx 
o 

exist, then the limit (1:3) exists f or any solution y(x) of (1:2). 

We now write each function Ai(x) as the difference of two non-
negative functions, Ai(x)=Aj (x)— Al' (x), where4/ =(|-4t| +Ai)/2, 
Al' «(|i4<| -Ai)/2. Then in §5, • • • , §8 we shall prove the follow­
ing theorem. 

THEOREM II. If Ai(x) (i = l, • • • , n) and B(x) are continuous on 
0 Sx < oo, if the integrals 
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(2:3) f xi~1Al,(x)dx (* - 1, • • • , »)• 
J o 

(2:4) f B(x)dx 
Jo 

exist, and if we have 

ƒ 00 

thA'i(t)dt < 2(* - k - 1)!*!/»(» - 1) 

whenever i=>2, & = 0, or i = 2/ — 1, 2j, k = i—j, • • • , i — 2 O*^, • • • , 
[(w+l)/2]), wAere we ag*w /Aa/ .4»+i(0 =0 *ƒ # & <wW, /Ae# /Atf fo'wi/ 
(1:3) exists for any solution y{x) of (1:2). ƒƒ iw addition we have 

(2:6) f" è x^lAl(x)dx - oo, 
•J o t - i 

töe* l im*.^*-"1^) «0. 

3. Some auxiliary lemmas. In this section we state four lemmas 
needed in proving the main theorems. The first of these is found in 
[ i ] . 

LEMMA 1. If f(x) is continuous on 0^x<<x>, if M(x) denotes the 
maximum of \f(t)\ on OSt^x, and if\ for some positive numbers a 
and Xo, \f(x)\ ^a+M(x)/2 (x*èXo), thenf(x) is bounded on 0£x< oo. 

LEMMA 2. If (2:5) holds under the restrictions on i and k stated in 
Theorem II, then (2:5) also holds f or i**»2, • • • , n, k**0, • • • , i — 2. 

This is manifestly true for t «2 . If i>2 and if i is odd, then 
i = 2/' — 1, j^2 and (2:5) holds if k^i—j^j — l. Suppose now that 
0£k<j~l. Then f — Jfe —1 — 2; —2 —*>j —lf and 

1 f thAl(t)dt £ x*~l f t^AKfidt, 

ƒ 00 

thAt'(t)dt < 2(j - l)\yn{n - 1) 

< 2(2; - 2 - k)\k\/n(n- 1). 

The reasoning when i is even is quite similar. 

LEMMA 3. If f(x) is continuous and bounded on 0 Sx < oo, and if the 
functions Ai(x) satisfy the hypotheses of Theorem I, then all integrals 
of the form 
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ƒ» 00 p 00 

f(x)xpAi(x)dx, J x*> | Ai(x) \dx (p = 0, 
0 " 0 

, i - 1) 

&m/. Under the hypotheses of Theorem II, /&e same conclusion is valid 
provided that i = 2, • • • , n, £ = 0, • • • , * — 2, or /Aa/ -4<(#) fo replaced 
byAl'(x). 

The proof of the first sentence of the lemma is immediate, and the 
second sentence follows similarly as soon as we refer to the preceding 
lemma. 

LEMMA 4. If y(x) is of class C(w+s) on 0 Sx < <x>, where m and q are 
non-negative integers, then 

(3:1) q\ lim sup ar« | y<m)(x) \ S lim sup | y(m+^(x) \. 
a;=oo #=soo 

To prove Lemma 4 we use Taylor's Theorem in the form 
<r-i 

y(~>(*j) = £ (* ~ ^o)fc^(m+fc)(^o)/*! 
(3:2) 

I . . . I yin+*)(t0)dtdh • • • <Ö«-i. 
so ^ *0 • / ar0 

Let Af=lim sup»-» |;y(w+ö)(x)| and pick e>0. Then take x0 so large 
that 

| ?<«*+«>(*) | < M + e (* è «o). 

It follows from (3:2) that if x è # o 

« - I 

| 3>(w)(*) | â Z) ** I ^(m+fc)(^o) | /*! + (M + e)*«M 

5! lim sup or* | y(w)(#) | S M + e. 
X= 00 

Since e is arbitrary, the statement of the lemma follows at once. 

4. Proof of Theorem I. By virtue of (2:1) we can pick x0 such that 

(4:1) f £ a*-11 Ai(x) | /(i - 1) Id» < 1/2. ƒi 00 W 

«o t= i 

If in (1:2) we substitute fory(w~° (i = 2, • • • , n) the values obtained 
from (3:2) by replacing m by n — i and q by i— 1, and solve the re­
sulting equation for y(n), we get an equation which upon integration 
between the limits x0 and x gives 
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n %— 2 /• x ft £ A fc 
(n— i+k) (xo)dt 

(4:2) - è r r x r ^^oy^^w^o • • • #«-1 
i = l •/ a;0 «^ x0 J XQ 

+ f B(t)dt. 
J XQ 

Define the quantities B and a and the function M(x) by the equations 

ƒ• . * 

J B ( / ) * 

a = | y(*-i)(*0) | 
(4:3) 

+ E f " I il«(0 I E £ | y(*-*fc)(*o) I dt + B, 

Jf(ac) = max I y(nr"1)(0|. 

J3 exists by virtue of (2:2) and a exists by virtue of Lemma 3. From 
(4:2) and (4:1) we now get 

(4:4) | y<—«(*) | S a + M(x)/2 (x è *o). 

It follows from Lemma 1 that y(n~l)(x) is bounded on 0^x< oo. In 
this event we use Lemma 3 to see that the integrals involving Ai(t) 
on the right side of (4:2) approach limits as x—>oo. By (2:2) the 
integral of B(x) approaches a limit. Therefore, y^^Hx) has a limit, 
proving Theorem I. 

5. Proof of Theorem II when y^n~1\x) does not change sign for 
large values of x. Then we may assume without loss of generality that 
Xo is so large that y^n'-1)(x) ^ 0 for x^x0 and that 

(5:1) f °° Ê x*-lAi'(%)/{% - \)\dx < 1/2. 

Since y*-«( / )^0 on /^*o and - A ( 0 = ^ / ' ( 0 ~ ^ / ( 0 ^-4/'(*), we 
then have from (4:2) and (5:1) that (4:4) holds, the integrals in a 
existing by virtue of the second part of Lemma 3. It follows from 
Lemma 1 that yin~l)(x) is bounded. Set Ai=A{ —Ai' in (4:2). Since 
y(n~u(x) is bounded we see from Lemma 2 that all of the terms in 
(4:2) on the right side approach limits as x—»<*> with the possible 
exception of 
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(5:2) - E f* f * * • • • f ^/fo-W'W^o • • • dh-i. 
t « l •/ «o ^ *o ^ *o 

Since -4/ èO, ^""^(/o) ifeO for /0 Ü£#o, this term is a nonincreasing func­
tion of x which is bounded below since all the other terms in (4:2) 
are bounded. Hence it also approaches a limit. Therefore, the limit 
(1:3) exists. 

6. Proof of Theorem II when y<n~l)(x) changes sign infinitely many 
times. Suppose first that y<n~l)(x) is bounded but that the limit (1:3) 
does not exist. Then we may assume without loss of generality that 

lim sup | y{n~l)(x) | = lim sup y^"l){x) = M > 0. 

Let xm be a monotone sequence of points such that #m--> <*>, y(n~~l)(xm) 
>0, y(n~l)(xm)-j>M. Let am be the first point to the left of xm such that 
y<»-D(am) =0. We can suppose that ax is so large that for some c<l 
and for i = 2, • • • , n, & = 0, • • • , i — 2 we have 

ƒ 00 

thA( (t)dt < 2c(i - 1 - *)l*!/»(n - 1) (x ^ <h). 
X 

By (4:2) with x0 replaced by am and x replaced by xm we have, if we 
observe that y(n"~1}(/) è 0 on am £ / gxm , 

/"-»(*„) ^ £ I I • • • I Ai' {k-ùy^itùdh • • • dh-i 

n t—2 /• xm fk 

+ E E -Al'(t)\y^-^\am)\dt 
»-2 Ar-0 •/ aw £ I 

n v-2 /» sm /& 

t -2 fc-0 •/ aw « I 

(6:2) 
« v-2 / » s m /& 

+ 
Since y^n~l){t) is bounded, we see from Lemma 3 that the first sum 
on the right of (6:2) approaches zero as ra—»<*>. By virtue of (2:4) 
so does the last term in (6:2). If we use Lemma 4 we discover that 
the upper limit of the third sum in (6:2) can not exceed 

n t-Z / V ( n - t + A ) ( a J fxm 

m«co »«2 * -0 ^i^m ^ a ^ 

| y<"-»(*) | 
£ lim sup £ E . . . , ' I ^ ' ö>* - 0. 
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Finally we use (6:1) and Lemma 4 to see that the upper limit of the 
second sum in (6:2) cannot exceed 

lim sup £ E f °° TT AJi (/) | y<-**>(a«) \ dt 

» <z? 2 c ( t - i - * ) i | y - « - « ( * ) | 
2g lim sup 2-/ 2-r ~ «««> t-2 *-o w(w — l)**""1-"* 

-2 

^ lim sup E S 2c | y<—»(x) \ /n(n - 1) - cM < M. 
3=oo t-«2 fc-0 

Referring to (6:2) we see that we have reached a contradiction of 
our choice of the points xm. 

7. Proof that yinmml\x) must be bounded. To complete the proof of 
the first part of Theorem II, it is sufficient to prove that y(n~~l)(x) 
must be bounded under the hypotheses (2:3), (2:4), (2:5) and the 
assumption that y^n"l){x) changes sign infinitely many times. Sup­
pose on the contrary that y(n~u is unbounded. Then we can pick a 
sequence xm—» oo such that 

(7:1) | ?<*-»(**) | à | y<-»(*) | (* £ * J , 

y(*-v(xm) has the same sign, which we may suppose to be positive, 
and / ^ ( « w ) - » ° ° . Let am be defined for xm as in §6, and suppose that 
a\ is so large that (6:1) holds. Using (7:1) and Taylor's Theorem (3:2) 
with m replaced by n—i+k, q replaced by i — 1 — k, Xo replaced by 0, 
and x replaced by am, we find that 

*-*-i . . . H 
*— h— 2 0 

I y^^\am) I ^ y^Kxm) — — ^ — — + E I y<~»»»>(0) \ -7 • 
(* — * — 1)1 wo A! 

It now follows from (6:2) and (6:1) that 
/ n /• 00 /t—14 f; (A 

y ' " - 1 ^ £ y<-»(*0< E I , . ' " * + c 
K M J 0m (* - 1)! 

+ EEI .„. / • / + *w* 
n i - 2 i - fc-2 I «,(n-i+k+h)(Ç)\ I /. oo 

+ E E E |y „L , Wl f *"M,<o<a. 
t-2 Jb-0 fc-0 k\h\ J am 

Since all of the integrals on the right of this last inequality approach 
zero as w—>«> and 0 < c < l , we reach a contradiction. 
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8. Proof of the second part of Theorem II. Suppose on the con­
trary that y(n~l)(x) does not approach zero. Without loss of generality 
we may assume that 

lim y(n~l)(%) = 2a > 0. 
a?=oo 

Then there exists an x0 such that 

(8:1) 3a > y^n~l)(x) > a (x ;> x0). 

Now set Ai=Ai —Ai' in (4:2) and let x—>oo. Then all of the terms 
on the right approach limits with the possible exception of the term 
(5:2). Since y(n-~l)(x) approaches a limit, so must (5:2). But by (8:1) 
we have 

ƒ» ti-i /» H 

I y(n-l)(h)dh • • • dK-% > a(/i-i - *o)*-7(* - 1)!. 
Consequently, the term (5:2) is greater than 

ƒi x n 

] £ ( ' - xoy^Ai(t)/(i- i)i*. 

By (2:6) and Lemma 3 this last integral becomes infinite as x—» <*>, so 
that (5:2) cannot approach a limit. This contradiction completes the 
proof of Theorem I I . 

Added in proof. Since the submission of this paper to the editors, 
it has come to the author's attention that Theorem I was proved by 
Otto Haupt, Über das asymptotische Nerhalten der Lösungen gewisser 
Unearer gewöhnlicher Differentialgleichungen, Math. Zeit. vol. 48 
(1942) pp. 282-292. Our proof, based on Lemma 1, seems distinctly 
simpler and certainly more elementary than that of Haupt. To the 
best of our present knowledge, Theorem II is new. 
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