
LIMIT POINTS OF SUBSEQUENCES 

R. CREIGHTON BUCK1 

1. Introduction. In a previous paper [2],2 it was shown that for 
simple sequences of real numbers, divergence of a sequence implies 
divergence of almost every subsequence. The proof given there re­
quired in an essential way that the space be metric. The purpose of 
this note is to show that the above result holds for multiple sequences 
in an Z,* space. If the space is compact separable metric, even more 
is true : the set of limit points of almost every subsequence coincides with 
the set of limit points of the original sequence. 

2. Notation. We denote by x=x[n]=x[ni, w2, • • • , nr\, where 
nu = 1, 2, • • • , an arbitrary r-tuple sequence with terms in a space M. 
Likewise, # '=#x[w] =#[Xi(wi), X2(^2), • • • , Ar(^r)] will denote an ar-
bitary subsequence of x; here, for any fixed k> \fc(l), X&(2), • • • form 
an increasing sequence of integers. This is the natural generalization 
of subsequences x\n of the simple sequence xn. 

L e t S be the set of all sequences s=*(sa) composed of O's and l 's, 
containing infinitely many l's. This represents in the usual manner 
the class of subsequences of a simple sequence [l, p. 788] that is 
5M = 1 if xn is chosen, and 0 if Xn IS omitted. A product measure can 
be defined in S [4, p. 420; 5, p. 144].8 

Then 
© = S X S X - X S 0 factors) 

is the class of all subsequences of an r-tuple sequence. Measure is de­
fined in © as the product measure over S . 

We assume that some definition of convergence is given for se­
quences in M. Limit points are then defined as 

Px = £[lim xf = p for some subsequence xf of x]. 

We recall the defining conditions of the Fréchet limit spaces [3, p. 
77]: 

(L) lim x *=p implies lim x' =pfor every subsequence xf of x. 
(L*) lim x=p if and only if pÇ_Px' for every subsequence xf of x. 
L* is the "star-convergence" of Urysohn. 
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3. Limit points. The following lemma is essential. 

LEMMA. Almost every s £ S coincides with any fixed t(~S in an infinite 
number of 1 coordinates. 

Set s — (sa) and t — (ta)\ ta is 1 for an infinite set of a's. Let 

Fn = §[sja - 0 for all a > n]y 

Then Fn is an elementary subset of S , and furthermore m(Fw)= 0; 
since C«CU i à « Fh, m{Cn) = 0. If C = UCW, then ra(C) =*0 so that w(C") 
= 1 where 

C' = Slj^sja = oo ]. 

THEOREM I. If M is an L space and pGPx, then pÇzPx' for almost 
every subsequence xr of x. 

If pÇ.Pxj then for some subsequence x" of #, lim x" =*p. Let r be 
the point of © corresponding to x", and r = (/1, t2, /8, • • • , £r)- By 
the lemma, for each k there is a set 2*. having measure 1, composed 
of points sk~(s«) of S whose coordinates coincide with those of 
^ ^ ( ^ a ) at an infinite number of Ts. Then 

2 « Si X 2 2 X • • • X 2r 

is a subset of © composed of points cr«(51
l s2, s8, • • • , sr) each of 

which coincides with r in an infinite number of components. S then 
corresponds to a set of subsequences xf of x each of which has a sub­
sequence in common with x". By (Z), this common subsequence con­
verges to py and pÇiPx'\ This is true for almost every subsequence x', 
form(S) = l. 

THEOREM 2. If M is an L* space with unique limits, then if x is 
divergent, so is almost every subsequence x' of x.* 

Either Px is void, or Px = {/>}, or Px contains at least two distinct 
points. If Px is void, then every subsequence of x is divergent. If Px 
contains distinct points p and g, then by the previous theorem, these 
are limit points of almost every subsequence, and since limits are 
unique, these are in turn divergent. Finally, if x is divergent and 
Px = {p}, there must be a subsequence x" of x for which Px" is void. 
As in the proof of Theorem 1, almost every subsequence x' of x has 
a subsequence in common with x", and must therefore be divergent. 

4 The statements of this and the following theorem were altered at the suggestion 
of Dr. M. M. Day. 
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We now suppose that closure of subsets of M is defined. 

THEOREM 3. If M is an L space and Px is separable, then Px' ~Px 
for almost every subsequence x1 of x. 

Choose a countable dense set EQPx. Let Ap be the class of sub­
sequences of x having p as a jimit point. Theorem 1 states that if 
pÇzPx, m(Ap) — l. Set A = Ç]P^E A P ; since E is countable, m(A)~l. 
Thus, for almost every subsequence x' of x, EQPx'CZPx. Closing 
these sets, we have the theorem. 

If M is a neighborhood space, and we define convergence in the 
usual way, I f becomes an L* space. Thus, Theorem 1 holds for multi­
ple sequences in any topological space. If, further, M obeys the Haus-
dorff separation axiom, limits are unique and Theorem 2 holds. If M 
is a topological space with second countability, then Px is separable, 
and Theorem 3 holds. 

COROLLARY 1. If M is a topological space with second countability, 
such that the interior of any neighborhood of a point contains a neighbor­
hood of that point, then for simple sequences x, Px = Pxf for almost all 
subsequences x' of x. 

The additional assumption implies that for simple sequences, the 
set of limit points is closed. (It might be noted that, as subsequences 
and limit points are here defined, the set of limit points of a multiple 
sequence need not be closed!) 

COROLLARY 2. If, in addition to the assumptions above, M is also a 
group, then almost every bracketing of the series ^an leaves the set of 
limit points unchanged. 

As in [2], bracketing a series is equivalent to selecting a subse­
quence. 
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