SCHUR'S THEOREMS ON COMMUTATIVE MATRICES

N. JACOBSON

In 1905 I. Schur ${ }^{1}$ proved that the maximum number $N(n)$ of linearly independent commutative matrices of n rows and columns is given by the formula $N(n)=\left[n^{2} / 4\right]+1=\nu^{2}+1$ if $n=2 \nu$ and $=\nu(\nu-1)+1$ if $n=2 \nu-1$. Schur also determined the sets of linearly independent commutative matrices containing $N(n)$ elements. In this note we give a simpler derivation of Schur's results and an extension of these results from algebraically closed fields to arbitrary fields.

If $A_{1}, \cdots, A_{N(n)}$ is a set of linearly independent commutative matrices, the set \mathfrak{N} of matrices $\sum A_{i} \phi_{i}$ where ϕ_{i} is arbitrary in the underlying field Φ is a commutative subalgebra containing the identity of the matrix algebra Φ_{n}. Hence $N(n)$ is the maximal dimensionality of commutative subalgebras of Φ_{n}. It is easy to see that $N(n) \geqq\left[n^{2} / 4\right]$ +1 . For consider the set B_{n} of matrices

$$
\left(\begin{array}{cc}
0 & A \tag{1}\\
0 & 0
\end{array}\right)
$$

where if $n=2 \nu, A$ is arbitrary in Φ_{ν} and if $n=2 \nu-1, A$ is an arbitrary matrix of ν rows and $\nu-1$ columns. Thus $\operatorname{dim} \AA_{n}=\left[n^{2} / 4\right]$. It may be verified that \mathbb{B}_{n} is a zero algebra. Hence the algebra \mathfrak{B}_{n} obtained by adjoining 1 to \mathbb{B}_{n} is a commutative algebra of dimensionality $\left[n^{2} / 4\right]+1$. We remark also that if $n=2 \nu-1$ we may replace B_{n} by the algebra $\bar{\Omega}_{n}$ of matrices of the form (1) in which A is an arbitrary matrix of $\nu-1$ rows and ν columns. We denote by \bar{B}_{n} the extension of \bar{B}_{n} obtained by adjoining 1 .

To prove that $N(n) \leqq\left[n^{2} / 4\right]+1$ it suffices to assume that Φ is algebraically closed. For if $A_{1}, \cdots, A_{N(n)}$ are linearly independent and commutative in Φ_{n}, then they have these properties in Σ_{n} for any extension field Σ of the field Φ. Thus $N(n, \Phi) \leqq N(n, \Sigma)$. We shall therefore assume that Φ is algebraically closed. Let \mathfrak{H} be a commutative subalgebra of Φ_{n} containing the identity and let N be the dimensionality of \mathfrak{H} over Φ. We suppose first that \mathfrak{A} is an indecomposable algebra of matrices. Then it is known that by replacing \mathfrak{N} by a similar set we may suppose that the matrices of \mathfrak{Z} have the form

[^0]\[

\left($$
\begin{array}{lll}
\alpha_{\alpha} & & * \tag{2}\\
& \ddots & \\
0 & & \alpha
\end{array}
$$\right)
\]

Thus $\mathfrak{A}=(1)+\mathfrak{R}$ where \mathfrak{N} is a nilpotent algebra of matrices in proper triangular form, that is, of the form (2) in which $\alpha=0$. Evidently $\operatorname{dim} \mathfrak{N}=N-1$.

Let the k_{1} th column ($k_{1}>1$) be the first column for which there exists a matrix $U_{1 k_{1}}$ in \mathfrak{R} with element in the ($1, k_{1}$) position not equal to 0 . We may suppose that the element in the ($1, k_{1}$) position of $U_{1 k_{1}}$ is 1 . We normalize $U_{1 k_{1}}$ further by using the following lemma.

Lemma 1. Let $U \in \Phi_{n}$ and let V be the matrix obtained from U by adding the kth column multiplied by θ to the lth column $(k \neq l)$ and then subtracting the lth row multiplied by θ from the kth row. Then U and V are similar.

We have $V=S^{-1} U S$ where $S=1+e_{k l} \theta, e_{k l}$ the matrix with 1 in the (k, l) position and 0 's elsewhere.

We may apply this lemma to $U_{1 k_{1}}$ and replace it by a matrix whose first row is $e_{k_{1}}=(0, \cdots, 1,0, \cdots, 0)$ where the 1 is in the k_{1} th column. The operations required for this purpose are additions of multiples of the k_{1} th column to later columns and additions to the k_{1} th row of later rows. These operations replace \mathfrak{N} by a properly triangular set of matrices \mathfrak{R}^{\prime} similar to \mathfrak{N} such that all the elements in the $(1, j)$ position with $j<k_{1}$ in \mathfrak{N}^{\prime} are 0 and such that \Re^{\prime} contains a matrix $V_{1 k_{1}}$ (similar to $U_{1 k_{1}}$) whose first row is $e_{k 1}$. Now let \mathfrak{B}^{\prime} be the subspace of \mathfrak{R}^{\prime} of matrices in which the elements in the ($1, k_{1}$) position are 0 and suppose that the k_{2} th column ($k_{2}>k_{1}$) is the first column for which there is a matrix $U_{1 k_{2}}$ in \mathfrak{B}^{\prime} with element in the ($1, k_{2}$) place not equal to 0 . Evidently any matrix in \mathfrak{N}^{\prime} has the form $V_{1 k_{1}} \beta_{1}+P^{\prime}, P^{\prime}$ in \mathfrak{P}^{\prime}. We now apply to $U_{1 k_{2}}$ the process used before for $U_{1 k_{1}}$ and replace it by a matrix $V_{1 k_{2}}$ similar to it and having $e_{k_{2}}$ for first row. The set \mathfrak{N}^{\prime} will be transformed into a set $\mathfrak{N}^{\prime \prime}$ of properly triangular matrices and $V_{1 k_{1}}$ changed into a new matrix which we shall again denote as $V_{1 k_{1}}$ with first row $e_{k_{1}}$. Any matrix in $\mathfrak{N}^{\prime \prime}$ has the form $A=V_{1 k_{1}} \beta_{1}+P^{\prime \prime}, P^{\prime \prime}$ in $\mathfrak{P}^{\prime \prime}$, the transform of the set \mathfrak{B}^{\prime}. It is clear that the elements in the ($1, j$) position, $j<k_{2}$, for any matrix in $\mathfrak{P}^{\prime \prime}$ are 0 . Hence $A=V_{1 k_{1}} \beta_{1}+V_{1 k_{2}} \beta_{2}+S^{\prime \prime}$ where $S^{\prime \prime}$ is in the subspace $\mathfrak{S}^{\prime \prime}$ of $\mathfrak{N}^{\prime \prime}$ of matrices having 0 in the $(1, j)$ position with $j \leqq k_{2}$. This process may be continued and proves the following lemma.

[^1]matrices that contain matrices $V_{1 k_{1}}, \cdots, V_{1 k_{r}}$ such that the first row of $V_{1 k_{i}}$ is $e_{k_{i}}, 1<k_{1}<k_{2}<\cdots<k_{r}$, and such that any matrix in $\mathfrak{R}^{(r)}$ has the form $\sum V_{1 k_{i}} \beta_{i}+Z$, where Z has first row 0 .

Now let \mathfrak{R}_{2} be the subset of $\mathfrak{N}^{(r)}$ of matrices Z having first row 0 . Evidently $\mathfrak{N}^{(r)}=\left\{V_{1 k_{1}}, \cdots, V_{1 k_{r}}\right\}+\mathfrak{N}_{2}$ and the $V_{1 k_{i}}$ are linearly independent. Hence $\operatorname{dim} \mathfrak{N}^{(r)}=N-1=r+\operatorname{dim} \mathfrak{N}_{2}$. Now we note that if $Z \in \mathfrak{N}_{2}$, the first row of $V_{1 k_{i}} Z$ is the k_{i} th row of Z and the first row of $Z V_{1 k_{i}}$ is 0 . Hence the k_{i} th row of every matrix Z in \mathfrak{N}_{2} is 0 .

We now repeat the argument for \mathfrak{N}_{2}. Then \mathfrak{N}_{2} may be replaced by a set $\mathfrak{N}_{2}^{(s)}$ similar to \mathfrak{N}_{2} such that (1) $\mathfrak{N}_{2}^{(s)}$ is properly triangular, (2) $\mathfrak{n}_{2}^{(s)}$ contains matrices $V_{2 l_{1}, \cdots,}, V_{2 l}$, having first row 0 and second row $e_{l_{1}}, \cdots, e_{l_{2}}$, respectively, such that any matrix in $\mathfrak{N}_{2}^{(s)}$ has the form $\sum V_{2 l_{i}} \beta_{i}+Z$ where Z is a matrix with first two rows 0 . Let \Re_{3} denote the set of matrices Z. We assert that if $s=l_{i}$ or $s=k_{j}$ then the s th row of \mathfrak{n}_{3} is 0 . This is clear if $s=l_{i}$. Hence suppose that $s=k_{j} \neq$ any l_{i}. Then the matrices of \mathfrak{N}_{2} all have k_{j} th row 0 and the operations performed in passing from \mathfrak{N}_{2} to $\mathfrak{N}_{2}^{(s)}$ do not affect this row. Hence the k_{j} th row of every matrix in $\mathfrak{N}_{2}^{(s)}$ is 0 . Evidently $N-1=r+s+\operatorname{dim} \Re_{3}$.

We now write $k_{i}=k_{1 i}, l_{i}=k_{2 i}, r=r_{1}, s=r_{2}$. Then if we continue this process we see that $N-1$ is equal to the number of matrices in the following set

$$
\begin{align*}
& e_{1 k_{11}}, \cdots, e_{1 k_{1} r_{1}} \\
& e_{2 k_{21}}, \cdots, e_{2 k_{2} r_{2}} \tag{3}
\end{align*}
$$

where $1<k_{11}<\cdots<k_{1 r_{1}}, 2<k_{21}<k_{22}<\cdots<k_{2 r_{2}}, \cdots$, and $r_{i}=0$ if $i=k_{j l}$ with $j<i$. Let $s_{1}, s_{2}, \cdots, s_{m}$ be the complete set of integers $k_{i j}$ arranged in increasing order. Then it is clear that $N-1$ $\leqq N\left(s_{1}, s_{2}, \cdots, s_{m}\right)$, the number of matrices in the set

$$
\begin{align*}
& e_{1 s_{1}}, e_{2 s_{1}}, \cdots, e_{s_{1-1}, s_{1}} \\
& e_{1 s_{2}}, e_{2 s_{2}}, \cdots, e_{s 1-1, s_{2}}, e_{s 1+1, s_{2}}, \cdots, e_{s_{2}-1, s_{2}} \tag{4}
\end{align*}
$$

Evidently

$$
\begin{align*}
N\left(s_{1}, s_{2}, \cdots, s_{m}\right) & =\left(s_{1}-1\right)+\left(s_{2}-2\right)+\cdots+\left(s_{m}-m\right) \\
& =\sum s_{i}-m(m+1) / 2 \tag{5}
\end{align*}
$$

Hence we have

$$
\begin{align*}
N-1 & \leqq N\left(s_{1}, \cdots, s_{m}\right) \leqq N(n-m+1, \cdots, n) \\
& =m(n-m) \tag{6}
\end{align*}
$$

Now $m(n-m)$ attains its maximum value for $m=[n / 2]$. If $n=2 \nu$ this maximum is ν^{2} and if $n=2 \nu-1$, it is $\nu(\nu-1)$. Thus the maximum value is $\left[n^{2} / 4\right]$. This proves for indecomposable algebras \mathfrak{H} the following theorem.

Theorem 1. If \mathfrak{A} is a commutative subalgebra of Φ_{n}, $\operatorname{dim} \mathfrak{N} \leqq\left[n^{2} / 4\right]$ +1 .

If \mathfrak{A} is decomposable we suppose that the matrices of \mathfrak{A} have the form

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

where $A \in \Phi_{n_{1}}$ and $B \in \Phi_{n_{2}}, n_{i} \geqq 1, n_{1}+n_{2}=n$. We may assume that the theorem holds for the $\Phi_{n_{i}}$.

Case 1. $n=2 \nu-1, \quad n_{1}=2 \nu_{1}-1, \quad n_{2}=2 \nu_{2}$. Here $\nu=\nu_{1}+\nu_{2}$ and $N \leqq \nu_{1}\left(\nu_{1}-1\right)+1+\nu_{2}^{2}+1 \leqq \nu(\nu-1)+1$. Equality holds between the last two terms only when $n=3$.

Case 2. $n=2 \nu, n_{1}=2 \nu_{1}-1, n_{2}=2 \nu_{2}-1$. Here $\nu=\nu_{1}+\nu_{2}-1$ and $N \leqq \nu_{1}\left(\nu_{1}-1\right)+1+\nu_{2}\left(\nu_{2}-1\right)+1 \leqq \nu^{2}+1$. Equality holds only if $n=2$.

Case 3. $n=2 \nu, n_{1}=2 \nu_{1}, n_{2}=2 \nu_{2}$. Here $\nu=\nu_{1}+\nu_{2}$ and $N=\nu_{1}^{2}+1+\nu_{2}^{2}$ $+1<\nu^{2}+1$. Thus the theorem is proved.

We have also proved the following theorem.
Theorem 2. The maximum number $N(n)$ of linearly independent commutative matrices of n rows and columns is given by the formula $N(n)=\left[n^{2} / 4\right]+1$.

We shall investigate next the form of commutative subalgebras \mathfrak{A} of Φ_{n} of the maximum dimensionality $N(n)$. Suppose first that \mathfrak{N} has the structure $\mathfrak{N}=(1)+\mathfrak{N}$ where \mathfrak{N} is a nilpotent algebra. Then it is known that by replacing \mathfrak{A} by a similar set we may suppose that the matrices of \mathfrak{R} are properly triangular. We may apply the above considerations to \Re. By (3), (4), (5) and (6) we see that if $n=2 \nu$ we must have $k_{11}=k_{21}=\cdots=k_{\nu 1}=\nu+1, \cdots, k_{1 \nu}=k_{2 \nu}=\cdots=k_{\nu \nu}=n$ as the set of k 's in (3). If $n=2 \nu-1$ the set of k 's is either $k_{11}=\cdots=k_{\nu 1}$ $=\nu+1, \cdots, k_{1 \nu-1}=\cdots=k_{\nu \nu-1}=n$ or $k_{11}=\cdots=k_{\nu-11}=\nu, \cdots$, $k_{1 \nu}=\cdots=k_{\nu-1 \nu}=n$. Suppose first that n is even. Let $\mathfrak{n}^{(r)}(r=\nu)$ and \mathfrak{R}_{2} be determined as before. It is clear that $\mathfrak{N}^{(r)}$ is similar to \mathfrak{N} by a matrix in Φ_{n} and we need not assume here that Φ is algebraically closed. The matrices of \mathfrak{R}_{2} have the form

$$
\left.B=\left(\begin{array}{c|c}
0 \cdots 0 & \overbrace{0 \cdots 0}^{\nu} \tag{7}\\
R & A \\
\hline 0 & 0
\end{array}\right)\right\} \nu .
$$

Since $k_{21}=\nu+1$ it is clear that the second row of R is 0 . Moreover the operations used to pass from \mathfrak{N}_{2} to \mathfrak{N}_{3} affect only the last ν rows and last ν columns of \Re_{2}. Hence the third row of R is the same as the third row of the corresponding matrix in \mathfrak{N}_{3}. Since $k_{31}=\nu+1$ the third row of R is 0 . Similarly the other rows of R are 0 , and $R=0$ in (7). Now $\operatorname{dim} \mathfrak{R}_{2}=\nu^{2}-\nu$. Hence \mathfrak{R}_{2} consists of all matrices of the form (7) in which $R=0$ and A is arbitrary. Let

$$
V_{1 i}=\left(\begin{array}{c|ccc}
0 & \cdots & 0 & 1 \\
& 0 \cdots & \cdots & 0 \\
- & V_{j} & \\
T_{i}
\end{array}\right), \quad j=\nu+1, \cdots, n
$$

where the 1 is in the j th column and T_{j} is a properly triangular matrix. Since $V_{1 j} B=B V_{1 j}$ the following holds in Φ_{ν} :

$$
\binom{0 \cdots 0}{A} T_{j}=0
$$

Since A is arbitrary, $T_{j}=0$. Thus $\mathfrak{N}^{(r)}$ is the set B_{n} and \mathfrak{N} is similar to the algebra \mathfrak{B}_{n} defined before. If n is odd a similar argument shows that \mathfrak{A} is similar either to \mathfrak{B}_{n} or to $\overline{\mathfrak{B}}_{n}$.

We suppose now that \mathfrak{A} is arbitrary. Evidently \mathfrak{N} contains the identity matrix. Since $n>3$ by the proof of Theorem $1, \mathfrak{H}$ is indecomposable. Moreover if Ω is the algebraic closure of Φ then \mathfrak{N}_{Ω} is an indecomposable algebra containing the identity. It follows that \mathfrak{N}_{Ω} is similar to a set of matrices of the form (1). Hence $\mathfrak{H}_{\Omega}=(1)+\Omega$ where \mathfrak{Z} is nilpotent and so \mathfrak{H}_{Ω} is similar to either $\mathfrak{F}_{n}(\Omega)$ or $\overline{\mathfrak{B}}_{n}(\Omega)$. Thus \mathfrak{B} is a zero algebra. Now let \mathfrak{N} be the radical of the algebra \mathfrak{N} and consider the semi-simple algebra $\overline{\mathfrak{Y}}=\mathfrak{A}-\mathfrak{N}$. The extension $\overline{\mathfrak{U}}_{\Omega}$ is a homomorphic image of \mathfrak{A}_{Ω}. Hence $\overline{\mathfrak{A}}_{\Omega}=(1)+\overline{\mathbb{D}}$ where $\bar{\Omega}$ is a zero algebra. The structure of $\overline{\mathfrak{U}}$ is given by the following lemma.

Lemma 3. If $\overline{\mathfrak{N}}$ is a semi-simple commutative algebra such that $\overline{\mathfrak{N}}_{\Omega}=(1)+\overline{\mathfrak{B}}$ where $\overline{\mathfrak{B}}$ is a zero algebra, then either $\overline{\mathfrak{V}}=(1)$ or Φ is an imperfect field of characteristic 2 and $\overline{\mathfrak{A}}=\Phi(x)$ where $x^{2}=\xi$, a nonsquare in Φ.

Since \mathfrak{A} is semi-simple, $\overline{\mathfrak{V}}$ is a direct sum of fields, but since $\overline{\mathfrak{N}}_{\Omega}$ has only one idempotent element, $\overline{\mathfrak{N}}$ is a field. Let $\overline{\mathfrak{N}}>(1)$. Then $\overline{\mathfrak{U}}$ has no
separable subfields, for if Σ were such a subfield Σ_{Ω} is a direct sum of fields and $\bar{\varkappa}_{\Omega}$ would contain more than one idempotent element. Thus Φ has characteristic $p \neq 0$ and $\overline{\mathcal{U}}$ contains an element x such that $x^{p}=\xi$ is in Φ where ξ is not a p th power in Φ. Now there exists an element η in Ω such that $\eta^{p}=\xi$ and hence the element $z=x-\eta$ in $\overline{\mathcal{N}}_{\Omega}$ is nilpotent of index p. Since $\overline{\bar{S}}$ is a zero algebra, $p=2$. It follows readily that in this case $\mathfrak{U}=\Phi(x), x^{2}=\xi$.

This lemma shows that unless Φ is an imperfect field of characteristic 2 any commutative subalgebra \mathfrak{A} of $\Phi_{n}(n>3)$ of maximum dimensionality has a difference algebra with respect to its radical \mathfrak{R} of dimensionality 1 . Since \mathfrak{A} contains the identity, $\mathfrak{U}=(1)+\mathfrak{R}$. As we have seen, this implies that \mathfrak{N} is similar to either \mathfrak{B}_{n} or to $\overline{\mathcal{B}}_{n}$.

Theorem 3. Suppose that Φ is not an imperfect field of characteristic 2 and let $n>3$. Then if \mathfrak{A} is a subalgebra of Φ_{n} of maximum dimensionality $N(n), \mathfrak{A}$ is similar to \mathfrak{B}_{n} if $n=2 \nu$ and \mathfrak{A} is similar to either \mathfrak{B}_{n} or $\overline{\mathfrak{B}}_{n}$ if $n=2 \nu-1 .{ }^{2}$

As a consequence we have the following theorem.
Theorem 4. Let Φ, n and \mathfrak{A} be as in Theorem 3. Then $\mathfrak{A}=(1)+\mathfrak{R}$ where \mathfrak{R} is a zero algebra.

We remark finally that if n is odd the sets \mathfrak{F}_{n} and $\overline{\mathcal{B}}_{n}$ are not similar. This may be seen by considering the sets \mathbb{B}_{n} and $\overline{\mathbb{B}}_{n}$. Let $\mathbb{S}(\overline{\mathbb{S}})$ be the space determined by the columns of the matrices of $\mathrm{B}_{n}\left(\overline{\mathrm{~B}}_{n}\right)$. Then $\operatorname{dim} \mathbb{S}=\nu$ and $\operatorname{dim} \overline{\mathbb{S}}=\nu-1$. On the other hand if 3_{n} were similar to \bar{B}_{n} we would have $\operatorname{dim} \mathfrak{S}=\operatorname{dim} \overline{\mathbb{S}}$. It follows that \mathcal{B}_{n} and \bar{B}_{n} are not similar and hence \mathfrak{B}_{n} and $\overline{\mathfrak{B}}_{n}$ are not similar. Thus in this case there are for $n=2 \nu-1>3$ two distinct classes in the sense of similarity of commutative subalgebras of dimensionality $N(n)$.

Johns Hopkins University

[^2]
[^0]: Received by the editors January 14, 1944.
 ${ }^{1}$ Zur Theorie vertauschbaren Matrizen, J. Reine Angew. Math. vol. 130 (1905) pp. 66-76.

[^1]: Lemma 2. The set $\mathfrak{\Re}$ is similar to a set $\mathfrak{R}^{(r)}$ of properly triangular

[^2]: ${ }^{2}$ If $n=2,3, \mathfrak{Y}$ may be decomposable. The determination of these algebras is readily obtained.

