
SOME REMARKS ON CONNECTED SETS 
P. ERDÖS 

This note will consist of a few disconnected remarks on connected 
sets. 

i. Swingle1 raised the question whether the plane is the sum of c 
disjoint biconnected sets. The answer as we shall show is affirmative. 

First we construct a biconnected set A with a dispersion point x 
such that any two points of A —x can be separated. (The first such 
set was constructed by Wilder.2 Our construction will be very similar 
to that of Burton Jones.3) 

Our biconnected set will contain the origin O, a t most one other 
point on lines through the origin with irrational slopes, and no point 
other than the origin on lines with rational slopes. Further it will 
contain at least one point on every cut of the plane. I t is easy to see 
that such a set exists. Every cut of the plane contains a closed subset 
which also cuts the plane, and the power of closed sets is known to 
be c. Let us well order the closed cuts G, C2, • • • , Cy, • • • , y < 0 « , 
where 0« is the least ordinal number of power c. We construct A as 
follows: O belongs to A, We shall choose a point xy on Cy and we 
shall have A = \Jxy. We shall determine xy by transfinite induction. 
Suppose we have already determined #a, S < 7 , we determine xy as 
follows: if Cy contains O then xy = D. If Cy does not contain O then 
clearly Cy has to intersect c lines through £). Therefore we can find a 
point Xy(ECy such that (O, xy) has irrational slope and does not go 
through any other point x*, 5 < y . (We denote by (a, b) the line 
through the points a and b.) This way we construct A, Clearly A is 
biconnected. First of all A is connected since it intersects every cut of 
the plane. Also any two points of A — £5 can be separated since the 
two points xi and #2, say, are on different irrational lines through the 
origin, and a rational line, which of course does not intersect A — £), 
will separate them. This completes the proof. The origin we call the 
center of A. 

Now we shall split the plane into the sum of c such disjoint sets 
Ay, y<£lat fla the smallest ordinal of power c. Let us well order the 
points Xy of the plane and the closed cuts Cy of the plane. Our first 
step is to select X\ as the center of A\ and a suitable point of A\ on &. 
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(By suitable we mean that it does not lie on any line with rational 
slope through *i.) Our second step is to select the first point which 
has not yet been selected as center of A^ then select suitable points 
on C\ and C% for A% and on C2 for A\. Suppose that this construction 
has been already carried out for all 5 < y . Then the 7th step consists 
of the following construction: First we take the first x* which has not 
yet been chosen as center of Ay. Then we choose suitable points on 
all the Ch 5^7, for Ay and suitable points on Cy for all the A8l b<y. 
it is easy to see that this construction can be carried out since before 
the 7th step we have chosen less than c points Xj, and a cut Cy if it 
does not go through the origin intersects c lines through the origin. 
( if the cut C goes through the origin of one or more of the Ays then 
of course we can choose the origin.) Thus the construction can be 
carried out for all ordinals y<Qa. Hence we get c sets Ay where 
\}Ay is the whole plane, Ayir^Ay2~0 and the Ay are all biconnected, 

which completes the proof of the theorem. 

A simple modification of this proof would give the following result: 
Let mSc be any cardinal number greater than 2, then the plane can 
be expressed as the sum of m disjoint biconnected sets.4 

ii. Let C be any connected set. Knaster and Kuratowski5 proved 
that there exists a proper connected subset of C. (Single points, of 
course, do not count as connected sets.) Their proof is very simple. 
Let p(£C be arbitrary. If C— p is connected our result is proved. 
If C—p is not connected it can be written in the form U+ V where 
U and Vare separated. But then it is easy to see that both U+p and 
V+p are connected. 

It seems likely that the following result is true: every connected 
set C contains a connected subset C' such that C—C' has power c. 
I am unable to prove this. It is easy to see that if a set C does not 
satisfy this conjecture it has to be both biconnected and widely con
nected, thus must be rather pathological. 

A. Stone6 proved that every connected set C has a connected sub
set C' such that C—C is infinite. Proof: First we can assume that 
C — p is connected for every £ £ C , for if not then at least one of the 
sets U+p or V+p has a complement of power c. ( U and V were 
defined in the previous paragraph.) Similarly for every sequence 
Pi,p2, - • • >pn> C—px—pi— • • • — disconnected. Choose^,£2, • • • 

4 Swingle proved (ibid.) that the Euclidean n space is the sum of r biconnected 
sets if r is any finite number not less than n+\t also that it is the sum of fcio bicon
nected sets. He also showed that «-space is not the sum of n or less biconnected sets, 

6 Knaster-Kuratovski, Fund. Math. vol. 2 (1921) p. 206. 
8 Arthur Stone, oral communication. 
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such that it will converge to a point £ ( ~ C Then C — ^ l ^ * is con
nected. For if 23i" lp* would separate C, a closed subset of it would 
also separate C. But a closed subset of ^HiP* is finite, and so by & 
sumption can not separate C, and this completes the proof. 

In this connection it might be of some interest to construct a con
nected set A with the following properties: (1) no finite subset dis
connects A, (2) every countable dense subset totally disconnects A. 
For our construction we shall have to use the continuum hypothesis. 

First we need the following lemma : Let St and 5 2 be two countable 
disjoint sets. Si is everywhere dense in the plane. Then there exist 
countably many closed Jordan curves JT such that JTC\S\ is dense on 
Jr, Jr^S2 = 0, and to any two points p and q there exists an r such 
that Jr separates p and g. The proof does not present any difficulties 
and can be omitted. 

And now to our construction.7 First we well order the countable 
dense subsets of the plane, Du D%, - • • , Dat • • • (their number is 
clearly c = fc$i;the continuum hypothesis has been assumed). Also we 
well order all the closed connected cuts of the plane Ci, again clearly 
S < Oi (it is well known that every cut of the plane contains a closed 
connected cut). We shall now construct our set A by transfinite in
duction. Let A be any given countable dense set, put AC.A. Our first 
step is to define a countable subset Pi of &. If &C\C\ is infinite we 
put Pi = 0, if CiHA is finite, we choose an arbitrary countably infinite 
P iCCi and put P i 0 4 - Consider next the smallest a such that 
2>«CA+Pi. Put Si = Da and S*=A+Pi-Z>«. Then by our lemma 
there exists a countable collection of closed Jordan curves J*l) such 
that Jil)r\D« is dense on 4 1 } and J ^ n A + P i - Z ^ O and any two 
points p and q are separated by some J?\ Now we make the condi
tion that no point of any Pa (/?> 1) should lie on any 7f. Suppose we 
carried out our construction for any y < ô, we shall show that we can 
carry it out for 7 = 5. Consider C&; if CjC\A4>Ha*iPa is infinite, then 
Pt = 0. If C s O A + y ^ a P f l is finite, then we choose a countably infinite 
subset P j of d, such that P* does not meet ^jx<a ]Cr°li J$* I*1 other 
words Pi does not meet any of countably many Jordan curves (we 
have assumed the continuum hypothesis). We have to prove that 
such a choice of Pa is possible. By assumption ( A + y ^ s PB)C\C* is 
finite. For each of the Jordan curves J$ (with X < 5) Jr^A+£/*<* Pa 
is dense on 7*, therefore CiC^J* is nowhere dense on C* (for if not, 
since C* is closed, it would contain a portion of 7* and therefore 
Cir\{A+^a<s Pa) would be infinite, as A+]C^<* Pfi ls dense on J*). 

7 Our construction will be similar to Miller's construction of a biconnected set 
without a dispersion point. (Fund. Math. vol. 29 (1937) p. 123.) 
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Therefore C^rS^^t XX1 J) is of first category on C«, and thus there 
are c points of C not belonging to X)x<« ] L £ I Jrt therefore we can 
choose an infinite P«CC«, P6r\%2\<& ]Cr°li J)— 0 without difficulty. 
Next consider the smallest a such that Z>«CA+2ft£* Pfi a n d ?̂« has 
not yet been dealt with in any of the previous steps. We then con
struct by our lemma countably many closed Jordan curves J* such 
that Dar\J*r is dense on J*r, J?n(A+!^<5 Pp-D*) = 0, and any two 
points p and q can be separated by some 7*. This completes the 5th 
step. Thus our construction can be carried out through all ordinals of 
the second number class and will exhaust all the Ca*s and Da&- Con
sider now the set A = A +]C/s Pfi* We claim that no finite set discon
nects it and that any countable dense set totally disconnects it. First 
of all every cut of the plane intersects our set in an infinite set, thus 
no finite set can disconnect it. On the other hand let Da be some 
countable dense set of A (clearly A is dense in the plane). At some 
step in our construction we had to deal with Da and it is clear that 
A+^/9 Pp—Da is totally disconnected, since if p and q are any two 
points there exists a Jr separating them and (A+23/*<* Pfi—Da)C\Jr 
=*0. q.e.d. 

By a slight modification of Miller's8 construction of a biconnected 
set without a dispersion point, we can construct a connected set A 
dense in an indecomposable continuum, such that there exists an open 
set 0 of the plane with OC\A having power c and if B is any con
nected subset of A then A —B is nowhere dense in OC\A> Clearly such 
a set is biconnected and in fact it can be made to have no dispersion 
point. By a further slight modification of Miller's construction we 
can construct a biconnected set without a dispersion point such that 
if Au A%, • • • is any countable collection of connected subsets of -4, 
then \Ji(A-Ai)?*A or ft iAiîéO. 

I can not decide the question whether there exists a connected set 
such that the complement of every connected subset of it is nowhere 
dense in it. 

The following problems may be of some interest: Is it true that 
every connected set contains a connected subset not homeomorphic 
to it? (Points do not count as connected sets.) Every known con
nected set (which is subset of a Euclidean space) contains at least 
three different types of connected subsets. The number three can not 
be improved as is shown by the arc. 

If a topological space does not satisfy any separation axioms the 
following example communicated to me by S. Eilenberg shows that 
the above conjecture is not true: Let the space be the integers, the 

8 Miller, ibid. 
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closed sets are the finite sets. Every infinite set is connected and they 
are clearly all homeomorphic. 

Is it true that every connected set of dimension n contains a con
nected subset of dimension n — 1 ? 

Is it true that every connected set of dimension greater than 1 con
tains 2° connected subsets ? 

Perhaps the following theorem which A. Stone and I proved might 
be of some interest: Let A be a totally disconnected set of power m 
(in a separable space), then if m is not the sum of countably many 
smaller cardinals, A can be written as the sum of two separated sets 
of power m. If m is the sum of No smaller cardinals the theorem is in 
general false. 

PROOF. Suppose first WT**]LXI W*,, nik<m. Denote by A' the set of 
those points of A for which every neighborhood contains m points 
of A. Now A —A' has power less than ra, since by Lindelofs theo
rem A— A' can be covered by countably many open sets each of 
which contains less than m points, thus A— A1 also contains less 
than m points. Since A is totally disconnected A ' = U+ V, where 
U and V are open-closed sets. Thus both of them have power m. 
Let p&A —A', the distance of p from U be ƒ(£), from F, #(£), £ £ Ua 

if f(p)£a<t>(P), pEVa if f(p)£a<l>(p). Since the power of A-A1 is 
less than m^c there exists an a such that ?7 aP\F a = 0. But then 
U+ Ua and V+ Va are two separated sets of power m whose sum is A ; 
this completes the proof. 

If m^YL^\m^ mk<in, we define A as follows: A contains mh 
points in (1/&, 1/fc + l ) , 0 belongs to A. Clearly A is totally discon
nected (its power is less than c, since c is not the sum of m smaller 
cardinals). Obviously A is not the sum of two separated sets of 
power m. 

PURDUE UNIVERSITY 


