
ON SOME SPECIAL DIOPHANTINE EQUATIONS 

E. ROSENTHALL 

1. Introduction. The following lemma is fundamental in the algo
rithm of reciprocal arrays for the solution of multiplicative diophan-
tine equations in certain arithmetics as developed by E. T. Bell.1 

LEMMA 1. All sets of integers satisfying the diophantine equation 

xy = zw 
are given by 

x = ab, y = cd, z = ad, w = cb 

and it suffices to take b and d coprime. 

Rational arithmetic and the theory of ideals in an algebraic number 
field provide instances of these arithmetics, and in all cases the funda
mental theorem of unique decomposition into prime factors is re
quired. 

By use of this algorithm Bell has obtained the complete solution 
of a large class of diophantine equations, and by means of an applica
tion of Lemma 1 (and results derived from it) to equations reducible 
in particular algebraic number fields the present writer has obtained 
the complete solution of some interesting diophantine equations. 

In this paper Lemma 1 is generalized to an arbitrary algebraic 
field, and the method of proof is then applied to a multiplicative equa
tion from which we immediately obtain a formula exhibiting all the 
rational integers satisfying x2+ay2=z2n+1. The procedure is to re
place the algebraic indeterminates in the given multiplicative equa
tion by the principal ideals they generate ; then solving this equation 
by the method of arrays we obtain the solution in terms of ideals. 
In this solution, by a use of properties of equivalent ideals all the 
ideals are replaced by suitable principal ideals and the complete solu
tion of the given equation is deduced. 

2. Notations. We shall adhere to the following notations: small let
ters a, b, • • • are reserved for the rational integers, the capital letters 
Af By • • • (except E) for integers of the algebraic number field %; 
the letter e will be reserved for the units of this field, and all other 
Greek letters (with or without subscripts) will denote ideals of $. 
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1 E. T. Bell, Reciprocal arrays and diophantine analysis, Amer. J. Math. vol. 35 

(1933) pp. 50-66. 
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Parentheses enclosing a letter denote the corresponding principal 
ideal; thus (X), (e), • • • . The conjugates of the ideal £ are repre
sented by £', £", • • • , £(n-x>. Two ideals, a and /3, are said to be 
equivalent if an ideal y exists such that the products ay, /3y are both 
principal ideals; the equivalence of a and /3 is expressed by a~fi. 

3. Generalization of Lemma 1. We shall now prove the following 
result. 

THEOREM 1. All integers X, F, Z, W satisfying 

(3.1) XY = ZW 

are given by 

X = ST/e, Y = UV/e, Z = SV/e, W = UT/e, 

where S, T, U, V are arbitrary and e takes only the finite set of rational 
integral values each equal to the norm of a representative ideal from each 
class. 

PROOF. By Lemma 1 all solutions of 

(3.2) (X)(F) = (Z)(W0 

are obtainable from 

(X) - ap, (F) = yô, (Z) = «8, (W) = yfl, 

and the ideals of the right-hand members must be restricted to the 
values which make the left-hand members principal ideals. Since the 
products a/3, 7/3 are to be principal ideals then a ^ y . Let { be a repre
sentative ideal of each class in which a is a member. Then a ~ £ and 
it follows that 

aft" • ' ' £ < " ^ > ~ 8 ' - •• É*—1* = (e). 

Hence a£ '£" • • • è(n~1\ and consequently Y £ ' £ ' ' • • • &n~l\ is equiv
alent to a principal ideal and must therefore itself be a principal 
ideal (A). Therefore, 

(eX) = afö? • • • É*»-1* = (;4)â8 

whence £/3 is a principal ideal. Put %/3=(B) and we have (eX) = (AB). 
Also 

(eY) = # ' • • • {<«-»78 = ( Q # = (0(J3) 

since £5 must be a principal ideal (D). 
Thus all solutions of (3.2) are obtainable from 
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(eX) = (AB), (eY) = (CD), (eZ) = (AD), (eW) = (CB). 

This implies that the set of all integers satisfying (3.1) is given by 

eX = etAB, eY = e2CD, eZ = ezAD, eW = e4tCB1 

where €i€2 = €3e4. Make the reversible substitution A = ef^S, B = T, 
^ = ci€r1F, C = e r r a n d we have the required result. 

4. The equation XX = z2n+1. Hereafter the field g is an arbitrary 
quadratic number field and the conjugate of an integer X and an ideal 
a are denoted by X and â respectively. 

The following theorem will be verified by induction. 

THEOREM 2. All solutions of 

act = (z2n+l) 

are given by 

2n+l 2n 2n—1 2 n-j~l n . . 
ÛJ = 0 i 02 9203 93 * ' * 4>n+l <Pn+lt \Z) = <£l9l#2p2 * ' ' 0n+l9n+l» 

From this we can deduce the following result.2 

THEOREM 3. All solutions of 

(4.1) XX = z2n+1 

are given by 

2n+l 2n+l 2n_- T T ^ ^ T » 
21 A — X U I " 2 i l 2 * * ' £Ln+lHn+l 

(4.2) 2 _ - _ 
JE 21 = H1H1H2H2 • • • Hn+lBn+h 

where E = en
x
+le^ - • - e%; ei, e2, • - - , en each being equal to the norm of 

a representative ideal from each class. 

If we put X = x+( — a)ll2y} then (4.1) becomes x2+ay2 = z2n+1 and 
equating rational and irrational parts we obtain from (4.2) an ex
plicit representation for all rational integers satisfying this equation. 
Although in general the solution appears in rational form, yet ïor 
each value of a the indeterminates x, y, z can be expressed by a finite 
number of polynomials in integral parameters. For, for each value 
of a the parameter E has only a finite set of integral values and the 
requirement that the right-hand members of (4.2) be divisible by 

2 For an account of the investigations on equation x2-\-ay2=*zn see L. E. Dickson, 
History of the theory of numbers, vol. 2, pp. 534-543; Th. Skolem, Diophanttsche 
Gleichungen, Berlin, 1938, pp. 64-68; J. V. Uspensky and M. A. Heaslet, Elementary 
number theory, 1939, pp. 389-396. 
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E2n+1, E2 respectively may be expressed by congruential conditions 
upon the coordinates of the integers Hi. 

EXAMPLE. From Theorem 3 it follows that all the rational integers 
satisfying x2+47y2 = zz are given by 

E\x + ( - 47)17V) = ± HÎHÎffî, E\ = HXHXHJIÎ, 

where E=e? = l, 22, 32 and Hh H2 are integers of i ?a ( -47)^ 2 . I t 
suffices to take Hi primitive. 

In order to select all integers from the above rational forms of 
x, y', z, it is necessary and sufficient to impose the following congru
ential conditions upon the coordinates of Hi = r+sW, H2=m+nW 
where TF=( l + ( -47) 1 / 2 ) /2 : 

(i) £ = 1. If n even then r, 5 even; otherwise no restrictions on r, s. 
(ii) E = 22. m odd, n even, $ s s 2 r s 0 (mod 8); m—4w==2 (mod 4), 

r = ^ = 0 (mod 4); m — 4^s=4 (mod 8), r=5 = 0, 2 (mod 4); m—4w = 8 
(mod 16), r==s=s0, 2 (mod 4); tn—4^ = 0, ±16 (mod 64), r = s (mod 
2); m —4WH=32 (mod 64) requires no restriction on r> s. 

m odd, m+5n = 2 (mod 4), f = s = 0 (mod 4); m + 5 w = 4 (mod 8), 
Y=s = 0 (mod 4); w+5^s=8 (mod 16), rs=2s (mod 4); m+SwsO, 
±16 (mod 64), r even; m+5^ = 32 (mod 64) requires no restriction 
on r and s. 

(iii) E = 32. w ( m + w ) ^ 0 (mod 3), r=s==0 (mod 9); m — 6 w s ± 3 
(mod 9), r s 5 = 0 (mod 9); w - 6 r c = ± 9 (mod 27), r + s = 0 (mod 9); 
w ~ 6 w s 0 (mod 27), but m-lUn^O (mod 36), r + s = 0 (mod 3); 
ra —114w = 0 (mod 36) requires no restriction on r and 5. 

m + 7 w = ± 3 (mod 9), rs=s = 0 (mod 9); w+7w==±9 (mod 27), 
r==3s = 0 (mod 9); m + 7n^0 (mod 27) but m + H 5 n ^ 0 (mod 36), 
r = 0 (mod 3) ; m +115^ = 0 (mod 36) requires no restriction on r and s. 

If in addition to the above n is even then r and 5 must both be even. 
The above conditions were obtained by considering in turn the 

cases according as H2B2 is divisible by eu e\> • • • , e\. 
For the proof of Theorem 2 we use the following two lemmas. 

LEMMA 2. All solutions of aâ=7j3j5 are given by a = 010203, i3 = 0i02, 
7 = 0303. 

LEMMA 3. All solutions of aâ=^y are given bya = 01020304, j3 = 01020303, 
y = 01020404. 

The proof for Lemma 2 is exactly as given in a previous paper8 

where the indeterminates were integers of a unique factorization 
8 E. Rosenthall, On some cubic diophantine equations, Amer. J. Math. vol. 65 (1943) 

pp. 664-665. 
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q u a d r a t i c field ; L e m m a 3 follows immedia te ly by a repea ted applica
t ion of L e m m a 1. 

5. Proof of Theorem 2. W e now show independen t ly t h a t T h e o 
rem 2 holds for n = 1 and then comple te t he proof b y ma themat i ca l 
induct ion . F r o m L e m m a 2 i t follows t h a t all a , (0) satisfying aâ = (s8) 
are ob ta inab le from 

a = 0l#203, W == 0102 = 0303» 

and app ly ing L e m m a 3 i t follows t h a t 

03 s=s X1X2X3X4, 01 = X1X2X3A3, 02 == XlX2X4X4» 

T h e n 

a = <£i<£2<?2, (2) = #i<s5i$2<5?>2j 

where we h a v e p u t Xi = <£i, %J<z\i=<t>2 since X2, X3, X4 a lways appear in 
th is p roduc t form. 

N o w consider t he induct ion from n — s ton = s + l. Apply L e m m a 2 
to aâ = 02*+3) = 0 2 8 + 1 ) (s) (0). T h e n 

a = 010203, 0 ) = 0i02, (*28+1) = 0303. 

B y hypothes is , T h e o r e m 2 holds for t h e las t equa t ion . Hence 

2s-fl 2s _ «+1 8 . 
03 = Ml M2 M2 ' ' ' M«+l/*a+l» (2) = MlMlM2M2 * * ' Ms+lMs+lî 

a n d e q u a t i n g the two pa rame t r i c representa t ions for (z) we obta in t he 
following equa t ions for all t he pa r ame te r s concerned, 

{MIM2 * • • /M-i} {MIM2 • • • M«+iJ = 0102. 

Apply ing L e m m a 3, 

MlM2 * * * Ms+l = X1X2X3X4, 01 = X1A2X3A3, 02 = A1X2X4A4. 

Subs t i t u t i ng these values of t he pa r ame te r s in the preceding formulas 
for a , (z) gives 

(5.1) a = XiÂ2^i^iMi M2P2 • • • Ms+iMs+i, (2) = XiAiX2A2^i#i, 

where t h e p a r a m e t e r s m u s t satisfy t he mul t ip l ica t ive equa t ion 

(5 . 2) M1M2 • • • /M-i = XiX2^i, 

where we have p u t X3X4 = ^ 1 . 
Apply ing t h e m e t h o d of a r rays 4 to (5.2) we obta in 

4 See E. T. Bell, loc. cü.} p. 62. 
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Xi = t i b • • 

X2 = rjirj2 • • 

^1 = f if 2 • • 

• £«+i> 

• Va+h 

* £•+!• 

Ml = £i*?ifi> 

M2 ==: ^ 2 ^ 2 » 

Ms+1 = £s+l*?a+lf*+l» 

Finally, substituting in (5.1) gives 

2«+3 2«+2 «+3 a 8+2 8+1 

ÛJ = 0i 02 92 ' * * 0«+10s+10a+20s+2> (2) = 01910292 * * * 0«+20*+2> 

where we have put £i=0i , ^ 1 = ^ 2 , f H-I?7«*7«+I=08+2, and %£i-ir)i-2~<l>i 
for i = 3, 4, • • • , 5 + 1 , since the parameters always occur in these 
product forms. This completes the induction. 

6. Proof of Theorem 3. All solutions of 

(6.1) (X)(X) = («•"+!) 

are obtainable from 

(6.2) (X) = 01 02 <?2 • # * 0 n + l $ w + l > W = 01<?102<?2 * ' * 0n+l<?n+l> 

and the ideals of the right-hand members must be restricted to those 
values which make the left-hand members principal ideals. From 
(6.2)i it follows that 0f+102w~1 • • • 0 n + i ~ (1). Let fc ( i = l , 2, • • •, n) 
be a representative ideal from each of the classes in which 0» is a mem
ber. Then we can put 0 & = (#i) and g*1^-1 • • • ^0w + i=(£Tw + i) . 
Multiplying both sides of (6.2)i by [{?i£i}n + 1{&Mn • • - { U « } 2 ] 2 n + 1 

and (6.2), by [{^ih}n+1{^h}n • • • U»£«}2]2 and also putting fcfc 
= (fii) we obtain 

(Ein+l
X) = (flf^rfff, • • • nS&u 

(22 0) = (H1H1H2H2 # • * -Sn+l#n+l) 

for all solutions of (6.1). This implies that all solutions of (4.1) are 
given by 

£ A = €1^1 JO2 n 2 • • • Hn+iHn+i, Jb z = €2121/21 • • • i / n + i / / n + i . 

Make the reversible substitution i2»+i= iiffn+i, and then observe that 
€26161 must be unity. Hence Theorem 3 is proved. 
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