References

1. A. A. Albert, *Quasigroups*. I, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 507-519.

2. —, Quasigroups. II, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 401-419.

3. O. Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 558-566.

UNITED STATES NAVAL ACADEMY, POSTGRADUATE SCHOOL

TWO ELEMENT GENERATION OF A SEPARABLE ALGEBRA

A. A. ALBERT

The minimum rank of an algebra A over a field F is defined to be the least number r=r(A) of elements x_1, \dots, x_r such that A is the set of all polynomials in x_1, \dots, x_r with coefficients in F. In what follows we shall assume that A is an associative algebra of finite order over an infinite field F.

It is well known that r(A) = 1 if A is a separable field over F and that r(A) = 2 if A is a total matric¹ algebra over F. Over fourteen years ago I obtained but did not publish the result that r(A) = 2 if A is a central division algebra over F. The purpose of this note is to provide a brief proof of the generalization which states that if A is any *separable* algebra over F then r(A) = 1 or 2 according as A is or is not commutative.

We observe first that a commutative separable² algebra Z is a direct sum of separable fields and that there exists a scalar extension K over F such that Z_K has a basis e_1, \dots, e_n over F for pairwise orthogonal idempotents e_i . If u_1, \dots, u_n is a basis of Z over F and $x=a_1u_1+\dots+a_nu_n$ the powers x^i have the form

$$x^{i} = \sum_{j=1}^{n} b_{ij} u_{j} \qquad (i = 1, \cdots, n),$$

where the determinant

$$d(a_1,\cdots,a_n)=\big|b_{ij}\big|$$

is a polynomial in the parameters a_1, \dots, a_n . If c_1, \dots, c_n are any

Received by the editors April 13, 1944.

¹ See page 95 of my Modern higher algebra.

² The definition of a separable algebra given below reduces to a direct sum of fields in the commutative case. When F is nonmodular the concept of semisimple algebra and separable algebra coincide.

distinct elements of K the quantity $x_0 = c_1e_1 + \cdots + c_ne_n$ is known¹ to generate the diagonal algebra Z_K , that is $Z_K = F[x_0]$ has a basis $x_0, x_0^2, \cdots, x_0^n$. If we express the quantities e_1, \cdots, e_n linearly in terms of u_1, \cdots, u_n we see that x_0 is a value of x for values a_{i0} of the a_i in K. The linear independence of $x_0, x_0^2, \cdots, x_0^n$ implies that $d(a_{10}, \cdots, a_{n0}) \neq 0$. Then $d(a_1, \cdots, a_n)$ is not identically zero and thus there exists a quantity x in Z such that Z has a basis x, x^2, \cdots, x^n over F, Z = F(x), r(Z) = 1.

An algebra A is called a separable² algebra if A is a direct sum of simple components A_k such that the center of every A_k is a separable field over F. If x and y are in A we define

to mean the set of all polynomials

$$\sum_{i=1,\cdots,m}^{j=1,\cdots,q} a_{ij} x^i y^j \qquad (a_{ij} \text{ in } F).$$

Only a finite number of the power products $x^i y^j$ are linearly independent and each F[x, y] is a linear subspace of A, m and q may be be selected so that F[x, y] has order mq over F.

A separable algebra has a unity quantity e and if A = F[x] then A has a basis $x^0 = e, x, \dots, x^{n-1}$ over F, A = F[x, e]. Also A is commutative. If A is not commutative and A = F[x, y] then e = x[f(x, y)]y and thus x and y must be nonsingular. Note then that A has a basis of power products x^iy^j where $i = 0, \dots, m-1$ and $j = 0, \dots, q-1$. We use these results in the proof of our principal

THEOREM. If A is a separable algebra which is not commutative then r(A) = 2, A = F[x, y] for nonsingular elements x and y such that F[x] is separable.

We first study the case where A is the direct product of a total matric algebra M of degree g and a division algebra D of degrees s over a separable center C over F. It is well known³ that D contains a maximal separable subfield $W = C[x_0]$ of degree s over C and that $W = F[x_0]$. The algebra $Q = (e_{11}, \cdots, e_{qq})$, whose basis consists of a set of primitive idempotents of M whose sum is its unity element e, has the property that $Z \neq Q \times W$ is separable and commutative, and so Z = F[x]. If K is a scalar splitting field over C of D the algebra Z_K contains n = gs primitive pairwise orthogonal idempotents whose sum

⁸ See Theorem 4.18 of my *Structure of algebras*, Amer. Math. Soc. Colloquium Publications, vol. 24, New York, 1939.

is the unity element e of the total matric algebra A_K of degree n over K. Also Z = C[x], $Z_K = K[x]$ and it is known¹ that there exists a quantity y_0 in A_K such that

$$A_K = K[x, y_0],$$

that is, the power products $x^i y_0^j$ taken for $i, j = 1, \dots, n$ are linearly independent in K. If $p = n^2$ and u_1, \dots, u_p are a basis of A over C we may write $y = a_1 u_1 + \dots + a_p u_p$ and express the powers $x^i y^j$ in the form

$$z_k = x^i y^j = \sum_{h=1}^{\infty} b_{kh} u_h$$

(k = i + jn - n; i, j = 1, ..., n),

for b_{kh} in *F*. The determinant $d(a_1, \dots, a_p) = |b_{kh}|$ is a polynomial in a_1, \dots, a_p with coefficients in *C* which is not identically zero since it is not zero for values a_{10}, \dots, a_{j0} which define y_0 . It follows that A = C[x, y]. But C[x] = F[x] so that A = F[x, y].

We finally consider a separable algebra A which is the direct sum of simple components A_1, \dots, A_t . By the proofs above every component $A_k = F[x_k, y_k]$, where y_k is the unity quantity e_k of A_k when A_k is commutative, $Z_k = F[x_k]$ is separable. The algebra Z which is the direct sum of Z_1, \dots, Z_t is a commutative separable algebra and so Z = F[x]. Let $y = y_1 + \dots + y_t$. Since F[x] contains every x_k the linear space F[x, y] contains $x_k^t y^j = x_k^t y_k^t$. For $x_k^t = x_k^t e_k$ and $e_k y^j$ $= (e_k y)^j = y_k^t$. It follows that F[x, y] contains every A_k and that F[x, y] = A.

THE UNIVERSITY OF CHICAGO