References

1. A. A. Albert, Quasigroups. I, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 507519.
2. —, Quasigroups. II, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 401-419.
3. O. Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 558-566.

United States Naval Academy, Postgraduate School

TWO ELEMENT GENERATION OF A SEPARABLE ALGEBRA

A. A. ALBERT

The minimum rank of an algebra A over a field F is defined to be the least number $r=r(A)$ of elements x_{1}, \cdots, x_{r} such that A is the set of all polynomials in x_{1}, \cdots, x_{r} with coefficients in F. In what follows we shall assume that A is an associative algebra of finite order over an infinite field F.
It is well known that $r(A)=1$ if A is a separable field over F and that $r(A)=2$ if A is a total matric ${ }^{1}$ algebra over F. Over fourteen years ago I obtained but did not publish the result that $r(A)=2$ if A is a central division algebra over F. The purpose of this note is to provide a brief proof of the generalization which states that if A is any separable algebra over F then $r(A)=1$ or 2 according as A is or is not commutative.

We observe first that a commutative separable ${ }^{2}$ algebra Z is a direct sum of separable fields and that there exists a scalar extension K over F such that Z_{K} has a basis e_{1}, \cdots, e_{n} over F for pairwise orthogonal idempotents e_{i}. If u_{1}, \cdots, u_{n} is a basis of Z over F and $x=a_{1} u_{1}+\cdots+a_{n} u_{n}$ the powers x^{i} have the form

$$
x^{i}=\sum_{j=1}^{n} b_{i j} u_{j} \quad(i=1, \cdots, n),
$$

where the determinant

$$
d\left(a_{1}, \cdots, a_{n}\right)=\left|b_{i j}\right|
$$

is a polynomial in the parameters a_{1}, \cdots, a_{n}. If c_{1}, \cdots, c_{n} are any

[^0]distinct elements of K the quantity $x_{0}=c_{1} e_{1}+\cdots+c_{n} e_{n}$ is known ${ }^{1}$ to generate the diagonal algebra Z_{K}, that is $Z_{K}=F\left[x_{0}\right]$ has a basis $x_{0}, x_{0}^{2}, \cdots, x_{0}^{n}$. If we express the quantities e_{1}, \cdots, e_{n} linearly in terms of u_{1}, \cdots, u_{n} we see that x_{0} is a value of x for values $a_{i 0}$ of the a_{i} in K. The linear independence of $x_{0}, x_{0}^{2}, \cdots, x_{0}^{n}$ implies that $d\left(a_{10}, \cdots, a_{n 0}\right) \neq 0$. Then $d\left(a_{1}, \cdots, a_{n}\right)$ is not identically zero and thus there exists a quantity x in Z such that Z has a basis x, x^{2}, \cdots, x^{n} over $F, Z=F(x), r(Z)=1$.

An algebra A is called a separable ${ }^{2}$ algebra if A is a direct sum of simple components A_{k} such that the center of every A_{k} is a separable field over F. If x and y are in A we define

$$
F[x, y]
$$

to mean the set of all polynomials

$$
\sum_{i=1, \cdots, m}^{j=1, \cdots, q} a_{i j} x^{i} y^{j} \quad\left(a_{i j} \text { in } F\right)
$$

Only a finite number of the power products $x^{i} y^{j}$ are linearly independent and each $F[x, y]$ is a linear subspace of A, m and q may be be selected so that $F[x, y]$ has order $m q$ over F.

A separable algebra has a unity quantity e and if $A=F[x]$ then A has a basis $x^{0}=e, x, \cdots, x^{n-1}$ over $F, A=F[x, e]$. Also A is commutative. If A is not commutative and $A=F[x, y]$ then $e=x[f(x, y)] y$ and thus x and y must be nonsingular. Note then that A has a basis of power products $x^{i} y^{j}$ where $i=0, \cdots, m-1$ and $j=0, \cdots, q-1$. We use these results in the proof of our principal

Theorem. If A is a separable algebra which is not commutative then $r(A)=2, A=F[x, y]$ for nonsingular elements x and y such that $F[x]$ is separable.

We first study the case where A is the direct product of a total matric algebra M of degree g and a division algebra D of degrees s over a separable center C over F. It is well known ${ }^{3}$ that D contains a maximal separable subfield $W=C\left[x_{0}\right]$ of degree s over C and that $W=F\left[x_{0}\right]$. The algebra $Q=\left(e_{11}, \cdots, e_{g g}\right)$, whose basis consists of a set of primitive idempotents of M whose sum is its unity element e, has the property that $Z \neq Q \times W$ is separable and commutative, and so $Z=F[x]$. If K is a scalar splitting field over C of D the algebra Z_{K} contains $n=g s$ primitive pairwise orthogonal idempotents whose sum

[^1]is the unity element e of the total matric algebra A_{K} of degree n over K. Also $Z=C[x], Z_{K}=K[x]$ and it is known ${ }^{1}$ that there exists a quantity y_{0} in A_{K} such that
$$
A_{K}=K\left[x, y_{0}\right]
$$
that is, the power products $x^{i} y_{0}^{j}$ taken for $i, j=1, \cdots, n$ are linearly independent in K. If $p=n^{2}$ and u_{1}, \cdots, u_{p} are a basis of A over C we may write $y=a_{1} u_{1}+\cdots+a_{p} u_{p}$ and express the powers $x^{i} y^{j}$ in the form
\[

$$
\begin{aligned}
& z_{k}=x^{i} y^{j}=\sum_{h=1} b_{k h} u_{h} \\
& \quad(k=i+j n-n ; i, j=1, \cdots, n)
\end{aligned}
$$
\]

for $b_{k h}$ in F. The determinant $d\left(a_{1}, \cdots, a_{p}\right)=\left|b_{k h}\right|$ is a polynomial in a_{1}, \cdots, a_{p} with coefficients in C which is not identically zero since it is not zero for values $a_{10}, \cdots, a_{j 0}$ which define y_{0}. It follows that $A=C[x, y]$. But $C[x]=F[x]$ so that $A=F[x, y]$.

We finally consider a separable algebra A which is the direct sum of simple components A_{1}, \cdots, A_{t}. By the proofs above every component $A_{k}=F\left[x_{k}, y_{k}\right]$, where y_{k} is the unity quantity e_{k} of A_{k} when A_{k} is commutative, $Z_{k}=F\left[x_{k}\right]$ is separable. The algebra Z which is the direct sum of Z_{1}, \cdots, Z_{t} is a commutative separable algebra and so $Z=F[x]$. Let $y=y_{1}+\cdots+y_{t}$. Since $F[x]$ contains every x_{k} the linear space $F[x, y]$ contains $x_{k}^{d} y^{j}=x_{k}^{d} y_{k}^{j}$. For $x_{k}^{i}=x_{k}^{i} e_{k}$ and $e_{k} y^{j}$ $=\left(e_{k} y\right)^{j}=y_{k}^{j}$. It follows that $F[x, y]$ contains every A_{k} and that $F[x, y]=A$.

The University of Chicago

[^0]: Received by the editors April 13, 1944.
 ${ }^{1}$ See page 95 of my Modern higher algebra.
 ${ }^{2}$ The definition of a separable algebra given below reduces to a direct sum of fields in the commutative case. When F is nonmodular the concept of semisimple algebra and separable algebra coincide.

[^1]: ${ }^{8}$ See Theorem 4.18 of my Structure of algebras, Amer. Math. Soc. Colloquium Publications, vol. 24, New York, 1939.

