Bibliography

1. M. R. Hestenes, An analogue of Green's theorem in the calculus of variations, Duke Math. J. vol. 8 (1941) pp. 300-311.
2. W. T. Reid, Green's lemma and related results, Amer. J. Math. vol. 63 (1941) pp. 563-574.
3. M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, 1939.

Harvard University

ON A CERTAIN TYPE OF NONLINEAR INTEGRAL EQUATIONS

MARK LOTKIN

1. Introduction. The object of this paper is to prove that the nonlinear integral equation

$$
\begin{align*}
\phi(x)=\lambda\left[f(x)+\sum_{i=1}^{m}\right. & \int_{a}^{b} \cdots \int_{a}^{b} K_{i}\left(x, s_{1}, \cdots, s_{i}\right) \\
& \left.\cdot F_{i}\left(s_{1}, \cdots, s_{i}, \phi\left(s_{1}\right), \cdots, \phi\left(s_{i}\right)\right) d s_{1} \cdots d s_{i}\right] \tag{1}
\end{align*}
$$

has at least one eigenvalue, provided the functionals

$$
\begin{align*}
G_{i}(x, v)=\int_{a}^{b} \cdots \int_{a}^{b} & K_{i}\left(x, s_{1}, \cdots, s_{i}\right) \tag{2}\\
& \quad F_{i}\left(s_{1}, \cdots, s_{i}, v\left(s_{1}\right), \cdots, v\left(s_{i}\right)\right) d s_{1} \cdots d s_{i}
\end{align*}
$$

are fully continuous, and the F_{i} satisfy a certain linear integrodifferential equation. The solution of (1) is shown to be equivalent to that of a variational problem containing infinitely many parameters. The latter problem, however, can be solved easily by the method of Ray-leigh-Ritz, which consists in approaching the solution of the variational problem by a sequence of variational problems containing only a finite number of parameters. The convergence of this procedure is assured by a convergence theorem of Friedrich Riesz.
2. Preparatory remarks. Let I be the closed interval $a \leqq x \leqq b$, and L^{2} the class of all functions having Lebesgue integrable squares on I with a norm not larger than N^{2}. Let, further, $\left\{v_{n}(x)\right\}(n=1,2,3, \cdots)$
be a set of functions in L^{2} and $\bar{v}(x)$ a function such that ${ }^{1}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int v_{n}(x) w(x) d x=\int \bar{v}(x) w(x) d x \tag{3}
\end{equation*}
$$

for any arbitrary w of integrable square on I or, what is equivalent, for any arbitrary $w \in L^{2}$; that is, we assume the weak convergence of $\left\{v_{n}\right\}$, in the following denoted by $W-\lim _{n \rightarrow \infty} v_{n}=\bar{v}$. We next show that $\bar{v} \in L^{2}$. Since the right-hand side of (3) is assumed to exist for every $w \in L^{2}$, it follows by a known result (see, for example, KaczmarzSteinhaus, Theorie der Orthogonalreihen) that \bar{v} is of integrable square over I. Hence, if $w=\bar{v}$, (3) becomes

$$
\int \bar{v}^{2}(x) d x=\lim _{n \rightarrow \infty} \int v_{n}(x) \bar{v}(x) d x,
$$

and since by Schwarz's inequality

$$
\left[\int v_{n}(x) \bar{v}(x) d x\right]^{2} \leqq N^{2}\left[\int \bar{v}^{2}(x) d x\right]
$$

we obtain, as claimed,

$$
\begin{equation*}
\int \bar{v}^{2}(x) d x \leqq N^{2} \tag{4}
\end{equation*}
$$

We now assume that the functional $G_{i}(x, v)$ be fully continuous, that is, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{i}\left(x_{n}, v_{n}\right)=G_{i}(\bar{x}, \bar{v}), \quad i=1,2, \cdots, m \tag{5}
\end{equation*}
$$

for any $\left\{x_{n}\right\} \in I$ and $v_{n} \in L^{2}$ for which $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$ and $W-\lim _{n \rightarrow \infty} v_{n}=\bar{v}$.
The introduction of a closed orthonormal system of functions $\left\{w_{\nu}(x)\right\} \in L^{2}$ associates with each v_{n} an infinite sequence of numbers

$$
c_{n \nu}=\int v_{n}(x) w_{\nu}(x) d x, \quad \nu=1,2, \cdots
$$

such that

$$
\sum_{\nu=1}^{\infty} c_{n \nu}^{2}=\int v_{n}^{2}(x) d x \leqq N^{2}
$$

for every $n \geqq 1$. The class L^{2} of functions v then corresponds to a class \mathfrak{Y}^{2} of vectors $\mathfrak{b} \equiv\left(c_{1}, c_{2}, \cdots\right)$ with $c_{\nu}=\int v(x) w_{\nu}(x) d x$. The transition

[^0]from L^{2} to \mathfrak{W}^{2} implies the substitution in $G_{i}\left(x_{n}, v_{n}\right)$ of $v_{n}(x)$ by its equivalent $\mathfrak{b}(x) \sim \sum_{p=1}^{\infty} c_{n v} w_{p}(x)$, and (5) now changes to
$$
\lim _{n \rightarrow \infty} G_{i}\left(x_{n}, v_{n}\right)=G_{i}(\bar{x}, \tilde{v}) \equiv P_{i}\left(\tilde{x}, \bar{c}_{1}, \tilde{\varepsilon}_{2}, \cdots\right)
$$
for any $\left\{x_{n}\right\} \in I$ and $\left\{v_{n}\right\} \in \mathfrak{F}^{2}$ for which $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$ and $\lim _{n \rightarrow \infty} c_{n \nu}$ $=\bar{c}_{v}, \nu=1,2, \cdots$. From the full continuity of the G_{i} thus follows the full continuity (Vollstetigkeit) ${ }^{2}$ of the P_{i}. It is just as easily seen that the converse also holds true.
3. Construction of a solution of the integral equation. In the G_{i} we now admit as arguments v_{n} only aggregates of the form $v_{n}(x)$ $=\sum_{v=1}^{n} c_{n \nu} w_{\nu}(x)$ with $\sum_{v=1}^{n} c_{n \nu}^{2}=N^{2}$ for every fixed n. The functional
\[

$$
\begin{equation*}
J\left(v_{n}\right)=2\left[\int f(x) v_{n}(x) d x+\sum_{i=1}^{m} e_{i} \int G_{i}\left(x, v_{n}\right) v_{n}(x) d x\right] \tag{6}
\end{equation*}
$$

\]

-here the e_{i} denote finite numbers to be determined later-is now a continuous function of the $c_{n \nu}$ and so has at least one minimum. Let $c_{n \nu}=a_{n \nu}(\nu=1,2, \cdots, n)$ be the minimal coordinates:
(7) $\quad \min J\left(v_{n}\right)=d_{n}=J\left(\phi_{n}\right), \quad \phi_{n}(x)=\sum_{\nu=1}^{n} a_{n v} w_{\nu}(x), \quad \sum_{\nu=1}^{n} a_{n v}^{2}=N^{2}$.

As a consequence of (7) we have ${ }^{8}$
(8) $\frac{\partial}{\partial c_{n \nu}}\left[J\left(v_{n}\right)+\frac{1}{\lambda_{n}}\left(N^{2}-\sum_{\mu=1}^{n} c_{n \mu}^{2}\right)\right]_{c_{n \nu} \nu a_{n \nu}}=0, \quad \nu=1,2, \cdots, n$.

However,

$$
\begin{aligned}
\frac{\partial J\left(v_{n}\right)}{\partial c_{n v}}=2\left[\int f w_{\nu} d x+\sum_{i} e_{i}\right. & \iint \cdots \\
& \left.\int K_{i}\left(v_{n} \frac{\partial F_{i}}{\partial c_{n v}}+w_{v} F_{i}\right) d x d s_{1} \cdots d s_{i}\right] .
\end{aligned}
$$

We must now make the following assumption: The F_{i} satisfy the linear integrodifferential equations

$$
\begin{equation*}
\iint \cdots \int K_{i}\left[e_{i} v_{n} \frac{\partial F_{i}}{\partial c_{n v}}-\left(1-e_{i}\right) w_{\nu} F_{i}\right] d x d s_{1} \cdots d s_{i}=0 \tag{9}
\end{equation*}
$$

[^1]for all arguments $v_{n}=\sum_{(\nu)} c_{n \nu} w_{\nu}$, identically in the $c_{n \nu}$.
In this case we obtain
$$
\frac{\partial J\left(v_{n}\right)}{\partial c_{n \nu}}=2\left[\int\left(f+\sum_{i} \int \cdots \int K_{i} F_{i} d s_{1} \cdots d s_{i}\right) w_{\nu} d x\right]
$$
and (8) leads to
\[

$$
\begin{equation*}
a_{n \nu}=\lambda_{n} \int G\left(x, \phi_{n}\right) w_{\nu} d x, \quad \nu=1,2, \cdots, n \tag{10}
\end{equation*}
$$

\]

with

$$
\begin{aligned}
G\left(x, \phi_{n}\right)=f(x)+\sum_{i} \int & \cdots \int K_{i}\left(x, s_{1}, \cdots, s_{i}\right) \\
& \cdot F_{i}\left(s_{1}, \cdots, s_{i}, \phi_{n}\left(s_{1}\right), \cdots, \phi_{n}\left(s_{i}\right)\right) d s_{1} \cdots d s_{i} .
\end{aligned}
$$

On account of $a_{n \nu}=\int \phi_{n} w_{\nu} d x$ the relations (10) may be written as

$$
\begin{equation*}
\int\left(\phi_{n}-\lambda_{n} G\left(x, \phi_{n}\right)\right) w_{\nu} d x=0 \quad \text { for } \nu=1,2, \cdots, n \tag{11}
\end{equation*}
$$

Equations (10) show that the $\left|\lambda_{n}\right|$ have a common positive lower bound: multiplication of (10) by $a_{n \nu}$ and summation for $\nu=1, \cdots, n$ result in

$$
\begin{equation*}
N^{2}=\lambda_{n} \int G\left(x, \phi_{n}\right) \phi_{n} d x \tag{12}
\end{equation*}
$$

But since $G\left(x, \phi_{n}\right)$ is a fully continuous function of the $a_{n v}$ for $x \in I$ and $\phi_{n} \in H^{2}$ it is bounded: there exists a $\delta>0$ such that

$$
\left|G\left(x, \phi_{n}\right)\right| \leqq N /(b-a)^{1 / 2} \delta \quad \text { for every } n
$$

Therefore

$$
\left|\int G\left(x, \phi_{n}\right) \phi_{n} d x\right| \leqq\left[\int G^{2}\left(x, \phi_{n}\right) d x\right]^{1 / 2}\left[\int \phi_{n}^{2} d x\right]^{1 / 2} \leqq N^{2} / \delta
$$

whence $\left|\lambda_{n}\right| \geqq \delta>0$ for every n.
Now the $\int \phi_{n}^{2} d x$ all have the same value N^{2}. This property of the sequence $\left\{\phi_{n}\right\}$ guarantees the existence of a $\Phi(x)$-defined almost everywhere in I and possessing a Lebesgue integrable square-which is the W-lim of a suitably chosen subsequence $\left\{\phi_{n}\right\}$ of $\left\{\phi_{n}\right\},{ }^{4}$

[^2]\[

$$
\begin{equation*}
W-\lim _{n \rightarrow \infty} \phi_{\bar{n}}(x)=\bar{\phi}(x) ; \tag{13}
\end{equation*}
$$

\]

because the system $\left\{w_{\nu}\right\}$ is closed Φ is determined uniquely almost everywhere in I. On account of (4), $\int \Phi^{2}(x) d x \leqq N^{2}$.

We are now going to show that

$$
\begin{equation*}
\lim _{\bar{n} \rightarrow \infty} \int G\left(x, \phi_{\bar{n}}\right) \phi_{\bar{n}} d x=\int G(x, \bar{\phi}) \bar{\phi} d x \tag{14}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left|\int G(x, \phi) \phi d x-\int G\left(x, \phi_{\bar{n}}\right) \phi_{\bar{n}} d x\right| \leqq & \left|\int G(x, \bar{\phi})\left(\bar{\phi}-\phi_{\bar{n}}\right) d x\right| \\
& +\left|\int\left(G(x, \bar{\phi})-G\left(x, \phi_{\bar{n}}\right)\right) \phi_{\bar{n}} d x\right|
\end{aligned}
$$

and the first expression on the right hand side-by (13)-may be made as small as desired by taking \bar{n} sufficiently large, only the second term remains to be considered. Now

$$
\left|\int\left(G(x, \bar{\phi})-G\left(x, \phi_{\bar{n}}\right)\right) \phi_{\bar{n}} d x\right| \leqq N\left[\int\left(G(x, \bar{\phi})-G\left(x, \phi_{\bar{n}}\right)\right)^{2} d x\right]^{1 / 2}
$$

and so (14) will be proved if we can show that $\lim _{n \rightarrow \infty} \int(G(x, \phi)$ $\left.-G\left(x, \phi_{n}\right)\right)^{2} d x=0$. This, however, follows immediately from the convergence theorem of Lebesgue. ${ }^{5}$ The sequence $L_{n} \equiv\left(G(x, \bar{\phi})-G\left(x, \phi_{n}\right)\right)^{2}$ obviously satisfies the conditions of that theorem: (a) L_{n} is Lebesgue integrable; (b) Since $|G(x, v)| \leqq N /(b-a)^{1 / 2} \delta,\left|L_{n}\right| \leqq 4 N^{2} /(b-a) \delta^{2}$ for every \bar{n}; (c) Because of the full continuity of $G(x, v), \lim _{n \rightarrow \infty}(G(x, \bar{\phi})$ $\left.-G\left(x, \phi_{n}\right)\right)=0$. Therefore $\bar{L}=0$, which proves (14).

We must now distinguish between these two cases:
I. There exists a $\delta^{\prime}>0$ such that $\left|\int G(x, \phi) \phi d x\right| \geqq N^{2} / \delta^{\prime}$;
II. $\int G(x, \phi) \phi d x=0$.

Case I. By (12), $\lambda_{n}=N^{2} / \int G\left(x, \phi_{n}\right) \phi_{\pi} d x$, so that by (14)

$$
\begin{equation*}
\lim _{\bar{n} \rightarrow \infty} \lambda_{\bar{n}}=\bar{\lambda}=\frac{N^{2}}{\int G(x, \bar{\phi}) \phi d x} \tag{15}
\end{equation*}
$$

exists; because of $I,|\bar{\lambda}| \leqq \delta^{\prime}$.

[^3]If we now apply equations (11) to indices \tilde{n} only and then take the $\lim _{n \rightarrow \infty}$ we obtain

$$
\int(\bar{\phi}(x)-\overline{ } G(x, \phi)) w_{\nu}(x) d x=0 \quad \text { for } \nu=1,2, \cdots
$$

Since the system of the $\left\{w_{\nu}\right\}$ is closed we may deduce $\bar{\phi}-\bar{\lambda} G(x, \bar{\phi})=0$, that is,

$$
\begin{aligned}
\bar{\phi}(x)=\bar{\lambda}\left[f(x)+\sum_{i=1}^{m} \int \cdots\right. & \cdots K_{i}\left(x, s_{1}, \cdots, s_{i}\right) \\
& \left.\cdot F_{i}\left(s_{1}, \cdots, s_{i}, \bar{\phi}\left(s_{1}\right), \cdots, \Phi\left(s_{i}\right)\right) d s_{1} \cdots d s_{i}\right]
\end{aligned}
$$

almost everywhere in I. We have thus obtained a solution $\bar{\phi}(x)$ of (1) belonging to the finite eigenvalue $\bar{\lambda}$.

The previously derived relationship $\int \phi^{2}(x) d x \leqq N^{2}$ may now be improved: replacing $G(x, \Phi)$ in (15) by its equal ($1 / \bar{\chi}) \bar{\phi}$ leads to $\int \phi^{2}(x) d x=N^{2}$.

Case II. We write equations (10) for indices \bar{n} only:

$$
\int G\left(x, \phi_{n}\right) w_{\nu} d x=\frac{1}{\lambda \bar{n}} a_{n \bar{n}}, \quad \nu=1,2, \cdots, \bar{n},
$$

and increasing \bar{n} beyond any bound we obtain, since $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ and $\left|a_{n \nu}\right| \leqq N$,

$$
\int G(x, \phi) w_{\nu} d x=0, \quad \nu=1,2, \cdots
$$

In this case $\bar{\phi}(x)$ may be considered a solution of (1) belonging to $\lambda=\infty$.
4. The variational problem. We see, then, that ϕ is always a solution of (1). This function possesses another important property: If $\bar{乌}^{2}$ denotes the class of all $\mathfrak{v}(x) \sim \sum_{(\nu)} c_{\nu} w_{p}(x)$ with $\sum_{(p)} c_{p}^{2}=N^{2}$, and

$$
\mathfrak{F}(x) \sim \sum_{\nu=1}^{\infty} \bar{a}_{\nu} w_{\nu}(x) \quad \text { with } \quad \bar{a}_{\nu}=\int \Phi(x) w_{\nu}(x) d x,
$$

then $\mathfrak{5}$ minimizes $J(\mathfrak{b})$.
To prove this we notice first that $J\left(\mathfrak{b}_{n}\right)$ results from $J\left(\mathfrak{b}_{n+1}\right)$ if we put $c_{n+1}=0$. Let d_{n} be the minimum of $J\left(\mathfrak{b}_{n}\right)$ in $\overline{\mathfrak{V}}^{2}$. Then obviously $d_{n} \geqq d_{n+1}$. Let, further, d be the minimum of $J(\mathfrak{b})$ for $\mathfrak{v} \in \overline{\mathfrak{G}}^{2}$; then $d_{n} \geqq d$ for every n. Therefore, if $\bar{d}=\lim _{n+\infty} d_{n}=J(\mathfrak{F})$, we get $d \geqq d$ or $\bar{d}=d+\eta$ with $\eta \geqq 0$. We shall show that $\eta=0$.

Since d is the lower bound of $J(\mathfrak{b})$ in $\overline{\mathscr{S}}^{2}$ there exists a $\mathfrak{p}(x)$ $\sim \sum_{(\nu)} p_{\nu} w_{\nu}(x)$ in $\overline{\mathscr{Y}}^{2}$ so that $J(p)=\bar{d}-\theta \eta$ with $0<\theta \leqq 1$. If, now, $\epsilon>0$ be chosen as small as desired, there is, because of the full continuity of $J(\mathfrak{b})$, a $\delta>0$ and an index r such that $|J(\mathfrak{p})-J(\mathfrak{p})|<\epsilon$ for every $\mathfrak{v} \in \overline{\mathscr{Y}}^{2}$, so long as $\left|c_{\nu}-p_{\nu}\right|<\delta$ for $\nu=1,2, \cdots, r$. We take $\epsilon=\theta \eta$ and choose $r^{\prime} \geqq r$ large enough to have $\sum_{\nu=1}^{r_{n}^{\prime}} p_{\nu}^{2}=N^{\prime 2}>N^{2} \cdot N^{2} /(N+\delta)^{2}$. Then the vector $\mathfrak{p}(x)=\sum_{v=1}^{r^{\prime}} \bar{p}_{\nu} w_{\nu}(x)$ with $\bar{p}_{\nu}=\left(N / N^{\prime}\right) p_{\nu}$ belongs to $\overline{\mathfrak{S}}^{2}$, and since $N^{\prime}>N^{2} /(N+\delta)$,

$$
\left|p_{\nu}-p_{\nu}\right|=\left|p_{\nu}\right| \cdot\left(N / N^{\prime}-1\right) \leqq N\left(N / N^{\prime}-1\right)<\delta
$$

for $\nu=1,2, \cdots, r^{\prime}$. We may, therefore, conclude that $|J(\mathfrak{p})-J(\mathfrak{p})|$ $<\theta \eta$ or $J(\mathfrak{p})<J(\mathfrak{p})+\theta \eta=\bar{d}$. But $d_{r^{\prime}} \leqq J(\mathfrak{p})$, and so $d_{r^{\prime}}<\bar{d}$.

By now choosing $\bar{n}, \bar{n} \geqq r^{\prime}$, such that $d_{n} \leqq d_{r^{\prime}}$ we get $d_{n} \leqq \bar{d}$, a relation which contradicts the fact that the sequence $d_{\boldsymbol{n}}$ converges to \bar{d} from above. Thus we see that $\eta=0$ or $\bar{d}=J(\bar{j})$.
5. Solution of the integrodifferential equation. It is easy to verify that equations (9) are fulfilled if we put $e_{i}=1 /(i+1), K_{i}$ continuous and

$$
\begin{gathered}
K_{i}\left(x, s_{1}, \cdots, s_{k}, \cdots, s_{i}\right)=K_{i}\left(s_{k}, s_{1}, \cdots,\right. \\
\left.\quad x, \cdots, s_{i}\right), \\
\quad k=1,2, \cdots, i \\
F_{i}\left(s_{1}, \cdots, s_{i}, u_{1}, \cdots, u_{i}\right)=a_{i} u_{1} \cdots u_{i}
\end{gathered}
$$

for $i=1,2, \cdots, m$.
It remains to be shown that functionals of the type

$$
Q(x, v)=\int \cdots \int K\left(x, s_{1}, \cdots, s_{i}\right) v\left(s_{1}\right) \cdots v\left(s_{i}\right) d s_{1} \cdots d s_{i}
$$

are fully continuous for $x \in I$ and $v \in L^{2}$. Let us, therefore, assume that $\left\{x_{n}\right\} \in I,\left\{v_{n}\right\} \in L^{2}, \lim _{n \rightarrow \infty} x_{n}=\bar{x}$, and $W-\lim _{n \rightarrow \infty} v_{n}=\bar{v}$. Then $\left|Q(\bar{x}, \bar{v})-Q\left(x_{n}, v_{n}\right)\right| \leqq\left|Q(\bar{x}, \bar{v})-Q\left(\bar{x}, v_{n}\right)\right|+\left|Q\left(\bar{x}, v_{n}\right)-Q\left(x_{n}, v_{n}\right)\right|$ $\begin{aligned}=\mid \int \cdots \int K\left(\bar{x}, s_{1}, \cdots,\right. & \left.s_{i}\right)\left[\bar{v}\left(s_{1}\right) \cdots \bar{v}\left(s_{i}\right)\right. \\ & \left.-v_{n}\left(s_{1}\right) \cdots v_{n}\left(s_{i}\right)\right] d s_{1} \cdots d s_{i} \mid\end{aligned}$

$$
\begin{aligned}
+\mid \int & \cdots \int\left[K\left(\bar{x}, s_{1}, \cdots, s_{i}\right)\right. \\
& \left.-K\left(x_{n}, s_{1}, \cdots, s_{i}\right)\right] v_{n}\left(s_{1}\right) \cdots v_{n}\left(s_{i}\right) d s_{1} \cdots d s_{i} \mid
\end{aligned}
$$

Because of the continuity of K the second term on the right-hand side may be made arbitrarily small by choosing n sufficiently large. In order to show that the same applies also to the first term we continue as follows:

$$
\begin{aligned}
& \left|\int \cdots \int K\left[\bar{v}\left(s_{1}\right) \cdots \bar{v}\left(s_{i}\right)-v_{n}\left(s_{1}\right) \cdots v_{n}\left(s_{i}\right)\right] d s_{1} \cdots d s_{i}\right| \\
& =\mid \int \cdots \int \sum_{k=1}^{i} \bar{v}\left(s_{1}\right) \cdots \bar{v}\left(s_{k-1}\right)\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] \\
& \cdot v_{n}\left(s_{k+1}\right) \cdots v_{n}\left(s_{i}\right) d s_{1} \cdots d s_{i} \mid \\
&
\end{aligned} \begin{aligned}
& \leqq \sum_{k=1}^{i} \mid \int \cdots \int\left(\int K\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right) \\
& \quad \leqq \sum_{k=1}^{i}\left\{\int \cdots\left(s_{1}\right) \cdots \bar{v}\left(s_{k-1}\right) v_{n}\left(s_{k+1}\right) \cdots v_{n}\left(s_{i}\right) d s_{1} \cdots d s_{i} \mid\right. \\
& \cdot d\left(\int K\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right)^{2} \\
&
\end{aligned}
$$

Since $W-\lim _{n \rightarrow \infty} v_{n}=\bar{v}, \quad \lim _{n \rightarrow \infty}\left(\int K\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right)=0$, and since $\left|\int K\left(\bar{x}, s_{1}, \cdots, s_{i}\right)\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right| \leqq 2 N(b-a) \cdot \max |K|$, we see that the sequence of Lebesgue integrable functions $\left(\int K\left(\bar{x}, s_{1}, \cdots, s_{i}\right)\right.$ - $\left.\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right)^{2}$ has a common bound and the limit function zero. By Lebesgue's convergence theorem we may conclude that

$$
\lim _{n \rightarrow \infty} \int \cdots \int\left(\int K\left[\bar{v}\left(s_{k}\right)-v_{n}\left(s_{k}\right)\right] d s_{k}\right)^{2} d s_{1} \cdots d s_{k-1} d s_{k+1} \cdots d s_{i}=0
$$

for $k=1,2, \cdots, i$, so that the proof of the full continuity of $Q(x, v)$ is now complete.
6. A special case. The deductions of $\S 4$ are therefore applicable to the integral equation

$$
\begin{aligned}
\phi(x)=\lambda\left[f(x)+\sum_{i=1}^{m} a_{i} \int \cdots \int K_{i}\left(x, s_{1}, \cdots, s_{i}\right)\right. \\
\left.\cdot \phi\left(s_{1}\right) \cdots \phi\left(s_{i}\right) d s_{1} \cdots d s_{i}\right]
\end{aligned}
$$

If we assume that $a_{m}=1, a_{i}=0$ for $i=1,2, \cdots, m-1$, that is, if we consider
$\phi(x)=\lambda\left[f(x)+\int \cdots \int K_{m}\left(x, s_{1}, \cdots, s_{m}\right)\right.$

$$
\left.\cdot \phi\left(s_{1}\right) \cdots \phi\left(s_{m}\right) d s_{1} \cdots d s_{m}\right]
$$

we know that it has at least one solution, and that this solution may belong to a finite or an infinite eigenvalue. The homogeneous equation

$$
\phi(x)=\lambda \int \cdots \int K_{m}\left(x, s_{1}, \cdots, s_{m}\right) \phi\left(s_{1}\right) \cdots \phi\left(s_{m}\right) d s_{1} \cdots d s_{m}
$$

however, has always at least one finite eigenvalue. In this case namely (see (6))

$$
J\left(v_{n}\right)=2 e_{m} \int G_{m}\left(x, v_{n}\right) v_{n}(x) d x
$$

so that

$$
d_{n}=\frac{2}{m+1} \int G_{m}\left(x, \phi_{n}\right) \phi_{n}(x) d x=\frac{2}{m+1} \cdot \frac{N^{2}}{\lambda_{n}}
$$

or

$$
\lambda_{n} \cdot d_{n}=(2 /(m+1)) N^{2}
$$

But since the functional

$$
\frac{1}{2(m+1)} J(v)=\int \cdots \int K_{m}\left(x, s_{1}, \cdots, s_{m}\right)
$$

$$
\cdot v\left(s_{1}\right) \cdots v\left(s_{m}\right) d x d s_{1} \cdots d s_{m},
$$

$K_{m} \neq 0, v \in \bar{H}^{2}$, certainly has a minimum \bar{d} differing from zero,

$$
\bar{\lambda}=\lim _{\bar{n} \rightarrow \infty} \lambda_{n}=\frac{2 N^{2}}{\bar{d}(m+1)}
$$

is finite.
Carleton College

[^0]: ${ }^{1}$ All integrations are to be extended over the interval I.

[^1]: ${ }^{2}$ See D. Hilbert, Grundzige einer allgemeinen Theorie der linearen Integralgleichungen, 1912, p. 177. A fully continuous function $P\left(x, c_{1}, c_{2}, \cdots\right)$, where $x \in I$ and $\sum_{r=1}^{\infty} c_{r} \leqq N^{2}$, is bounded.
 ${ }^{3}$ In (8), $1 / \lambda_{n}$ denotes Lagrange's multiplier for the extremum problem under consideration. As will be shown subsequently, $\lambda_{n} \neq 0$ for every n.

[^2]: ${ }^{4}$ Friedrich Riesz, Untersuchungen uber Systeme integrierbarer Funktionen, Math. Ann. vol. 69 (1910) p. 467. The sequence $\{\bar{n}\}$ is determined by Hilbert's diagonal method (see, for example, Hellinger-Toeplitz, Encyklopädie der mathematischen Wissenschaften vol. II C 13, p. 1405).

[^3]: ${ }^{5}$ If a sequence of Lebesgue integrable functions $L_{n}(x)$ possessing a common bound has a limit function $\bar{L}(x)$, then \bar{L}, too, is Lebesgue integrable and $\lim _{n \rightarrow \infty} \int L_{n}(x) d x$ $=\int \bar{L}(x) d x$.

