ON UNIFORM CONVERGENCE OF TRIGONOMETRIC SERIES

otto szász

1. Introduction. The following theorems have been proved previously.¹

THEOREM I. If the function $\phi(t)$ is throughout continuous, periodic of period 2π , $\phi(t) = \phi(-t) = \phi(2\pi + t)$,

(1.1)
$$\phi(t) \sim \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos nt,$$

and if

$$(1.2) na_n > - K,$$

for some constant K, and all n, then the series (1.1) is uniformly convergent (on the real axis).

THEOREM II. If f(t) is everywhere continuous, periodic of period 2π ' f(t) = -f(-t),

(1.3)
$$f(t) \sim \sum_{1}^{\infty} b_n \sin nt,$$

and if

$$(1.4) nb_n > -K, n = 1, 2, 3, \cdots,$$

then the series (1.3) is uniformly convergent.

THEOREM III (CHAUNDY AND JOLLIFFE). The Fourier series (1.3) is uniformly convergent, if

$$(1.5) b_n \ge b_{n+1} > 0, \text{ and if } nb_n \to 0.$$

Note that here no explicit assumption is made on f(t).

THEOREM IV. If $\phi(t)$ is continuous at t=0, and if

(1.6)
$$\lim_{\lambda \downarrow 1} \limsup_{n \to \infty} \sum_{n}^{\lambda n} \left(\left| a_{\nu} \right| - a_{\nu} \right) = 0,$$

then the series (1.1) is uniformly convergent at t=0. (That is, $s_n(t_n) \rightarrow s$ whenever $t_n \rightarrow 0$.)

Presented to the Society, April 29, 1944; received by the editors April 18, 1944.

¹ Cf. [2] and the references given there; numbers in brackets refer to the literature cited at the end of this paper.

THEOREM V. If f(t) is continuous at t = 0, and if

(1.7)
$$\lim_{\lambda \downarrow 1} \limsup_{n \to \infty} \sum_{n}^{\lambda n} \left(\left| b_{\nu} \right| - b_{\nu} \right) = 0,$$

then $\sum_{1}^{n} vb_{\nu} = o(n)$, and the series (1.3) is uniformly convergent at t = 0.

Some more general results are given in the present paper. In particular:

THEOREM 1. Under the assumptions of Theorem IV the series (1.1) converges uniformly at each point of continuity of $\phi(t)$.

THEOREM 2. Under the assumptions of Theorem V the series (1.3) converges uniformly at each point of continuity of f(t).

Clearly Theorems 1 and 2 include Theorems I and II respectively. Either of the following two theorems includes Theorem III.

THEOREM 3. Suppose that

(1.8)
$$\sum_{n=1}^{2n} |b_{\nu} - b_{\nu+1}| = O(n^{-1}) \text{ as } n \to \infty,$$

and that

(1.9)
$$(1-r)\sum_{1}^{\infty}nb_{n}r^{n}\rightarrow 0 \quad \text{as} \quad r\uparrow 1;$$

then the trigonometric series $\sum b_n \sin nt$ is uniformly convergent.

Note that the assumptions refer solely to the coefficients b_n .

THEOREM 4. Suppose, for some constants $p \ge 0$, $q \ge 0$,

$$(1.10) nb_n + p = B_n \ge 0,$$

that

(1.11)
$$B_{n+1} \leq (1 + n^{-1}q)B_n$$
, for all large *n*,

and that (1.9) holds. Then $nb_n \rightarrow 0$ and the trigonometric series $\sum b_n \sin nt$ is uniformly convergent.

We also give (in §§5 and 6) analogous theorems for cosine series; here the partial sums $\sum_{1}^{n} a_{r} = s_{n}$ play a similar role as the sequence $\{nb_{n}\}$ for the sine series. However convergence of the series $\sum a_{r}$ does not carry as far as existence of the limit lim nb_{n} . It is for this reason that no such theorems have been established hitherto for cosine series. For details see §§5, 6 and 7. 2. Proof of Theorems 1 and 2. We have proved [2] that under the assumptions of Theorem IV

(2.1)
$$\lim_{\lambda \downarrow 1} \limsup_{n \to \infty} \sum_{n}^{\lambda n} |a_{\nu}| = 0.$$

If $\phi(t)$ is continuous at t_0 , then the Fourier series

$$\frac{\phi(t_0+\theta)+\phi(t_0-\theta)}{2}\sim\sum a_n\cos nt_0\cos n\theta,$$
$$\frac{\phi(t_0+\theta)-\phi(t_0-\theta)}{2}\sim\sum a_n\sin nt_0\sin n\theta$$

satisfy the assumptions of Theorems IV and V respectively, hence are uniformly convergent at $\theta = 0$. This proves Theorem 1. The proof of Theorem 2 follows on quite similar lines, since it has been proved [2] that

(2.2)
$$\lim_{\lambda \downarrow 1} \limsup_{n \to \infty} \sum_{n}^{\lambda n} |b_{\nu}| = 0.$$

It is clear from our proof that the assumptions of our theorems can be replaced by the sole assumptions (2.1) and (2.2) respectively.

We remark that in Theorems IV and V the assumptions (1.6) and (1.7) cannot be replaced by

$$\sum_{n}^{2n} |a_{\nu}| = O(1) \quad \text{and} \quad \sum a_{n} \text{ converges,}$$
$$\sum_{n}^{2n} |b_{\nu}| = O(1) \quad \text{and} \quad \sum_{1}^{n} \nu b_{\nu} = o(n),$$

respectively. We give an example, suggested by a construction due to Fejér [1].

Let $P_n(z) = \sum_{\nu=0}^{n-1} z^{\nu}/(n-\nu) - \sum_{\nu=0}^{n-1} z^{n+\nu}/(\nu+1)$, then $|P_n(z)| < 6$ for $|z| \leq 1$. Let $\mu_n = 2^{n^3}$, $\kappa_n = 2^{n(n+1)}$, $n = 1, 2, 3, \cdots$, and consider the polynomial series $\sum_{n=0}^{\infty} n^{-2} z^{\mu_n} P_{\kappa_n}(ze^{i/n})$. This series is clearly uniformly convergent for $|z| \leq 1$, the degree of the *n*th term is $2\kappa_n + \mu_n - 1 < \mu_{n+1}$, hence writing out the polynomials successively we get a power series, convergent for $|z| < 1: \sum_{n=0}^{\infty} c_n z^n = F(z)$, and $F(e^{it})$ is the Fourier power series of a continuous function. The structure of P_n easily yields $\sum_{n=0}^{2n} |c_n| = O(1)$. It can be proved, as in Fejér's example, that the series $\sum c_n e^{int}$ converges for each *t*, uniformly in $\epsilon \leq t \leq 2\pi - \epsilon$, $\epsilon > 0$; but neither component converges uniformly at t = 0. The same is true for

the series $\sum a_n \cos nt$, $\sum a_n \sin nt$, where $a_n = R(c_n)$; $\sum a_n$ converges, so that $\sum_{i=1}^{n} \nu a_{\nu} = o(n)$. Again, using Fejér's device, and replacing $e^{i/n}$ by e^{it_n} , where the sequence $\{t_n\}$ is everywhere dense in $(0, 2\pi)$, we get a continuous function with a Fourier series and its conjugate nonuniformly convergent everywhere, while $|c_n|$ is the same as before.

3. Proof of Theorem 3. It follows from (1.8) that $\lim b_n$ exists, and now from (1.9) that $\lim b_n = 0$. Furthermore

$$\sum_{1}^{2^{\kappa}} |b_{\nu} - b_{\nu+1}| \leq \sum_{n=0}^{\kappa-1} \sum_{2^{n}}^{2^{n+1}} |b_{\nu} - b_{\nu+1}| = \sum \frac{1}{2^{n}} O(1) = O(1),$$

hence

(3.1)
$$\sum_{1}^{\infty} |b_{r} - b_{r+1}| < \infty.$$

Moreover

(3.2)
$$\sum_{n}^{\infty} |b_{\nu} - b_{\nu+1}| \leq \sum_{\kappa=0}^{\infty} \sum_{n+2^{\kappa}}^{n+2^{\kappa+1}} |b_{\nu} - b_{\nu+1}| \\ = O\left(\frac{1}{n}\sum_{k=0}^{\infty}\frac{1}{2^{\kappa}}\right) = O\left(\frac{1}{n}\right),$$

hence

(3.3)
$$nb_n = n \sum_{n=1}^{\infty} (b_{\nu} - b_{\nu+1}) = O(1).$$

It was proved by Littlewood that boundedness of a sequence and Abel summability imply (C, 1) summability; if we apply this to the sequence $\{nb_n\}$ it follows from (1.9) and (3.3) that

(3.4)
$$\sum_{1}^{n} v b_{v} = o(n).$$

Next, from Abel's formula

(3.5)
$$\sum_{n}^{m} b_{\nu} \sin \nu t = \sum_{n}^{m-1} (b_{\nu} - b_{\nu+1}) T_{\nu}(t) + b_{m} T_{m}(t) - b_{n} T_{n-1}(t),$$

where

$$T_n(t) = \frac{\cos t/2 - \cos (n + 1/2)t}{2 \sin t/2},$$

hence in any interval $\epsilon \leq t \leq 2\pi - \epsilon$

otto szász

$$\left|\sum_{n}^{m} b_{\nu} \sin \nu t\right| < \epsilon^{-1} \pi \sum_{n}^{\infty} \left| b_{\nu} - b_{\nu+1} \right| + 2\epsilon^{-1} \pi \left(\left| b_{n} \right| + \left| b_{m} \right| \right).$$

Thus the series $\sum b_n \sin nt$ is uniformly convergent in $\epsilon \leq t \leq 2\pi - \epsilon$, $\epsilon > 0$. Let

$$\sum_{1}^{\infty} b_n \sin nt = f(t);$$

we shall prove next that $f(t) \rightarrow 0$ as $t \downarrow 0$. We write

$$f(t) = \left(\sum_{1}^{n} + \sum_{n+1}^{\infty}\right) b_{\nu} \sin \nu t = U_{1}(t) + U_{2}(t),$$

say, where $n = [\epsilon^{-1}t^{-1}]$. Now, employing (3.2), (3.3) and (3.5)

(3.6)
$$| U_2(t) | < t^{-1}\pi \left(\sum_{n+1}^{\infty} | b_{\nu} - b_{\nu+1} | + | b_{n+1} | \right) = t^{-1}O(n^{-1}) = \epsilon O(1).$$

As to $U_1(t)$, we have

$$U_{1} = \sum_{1}^{n} \nu b_{\nu} \frac{\sin \nu t}{\nu} = \sum_{1}^{n-1} v_{\nu} \Delta_{\nu} + v_{n} \frac{\sin nt}{n},$$

where

$$v_n = \sum_{1}^n v b_r, \qquad \Delta_n = \Delta \frac{\sin nt}{n} = \frac{\sin nt}{n} - \frac{\sin (n+1)t}{n+1}.$$

We have

$$\Delta_n = \int_0^t (\Delta \cos nx) dx = R \int_0^t z^n (1-z) dx, \qquad z = e^{ix},$$

hence

$$\left|\Delta_{n}\right| < \int_{0}^{t} \left|1-z\right| dx < t^{2},$$

and

(3.7)
$$| U_{1}(t) | < t^{2} \sum_{1}^{n} | v_{\nu} | + n^{-1} | v_{n} |$$
$$< \epsilon^{-2} n^{-1} \sum_{1}^{n} \nu^{-1} | v_{\nu} | + n^{-1} | v_{n} | \to 0$$

as $t \downarrow 0$, by (3.4).

860

[December

Now (3.6) and (3.7) yield

$$\limsup_{t\to 0} |f(t)| \leq \epsilon;$$

861

 ϵ being arbitrary, we get $f(t) \rightarrow 0$ as $t \rightarrow 0$. In view of (3.3) uniform convergence now follows from Theorem II.

We remark that under the assumptions of Theorem 3 the sequence $\{nb_n\}$ need not have a limit. This is seen from the example

 $nb_n = 1$ for $n = 2^{\nu}$, $\nu = 0, 1, 2, \cdots$, $b_n = 0$ otherwise.

Moreover in this case $b_n \ge 0$ and $\sum b_n$ is convergent.

On the other hand for the example $\sum_{2}^{\infty} (-1)^{n} \sin (2n-1)t/n \log n$, $nb_{n} \rightarrow 0$, $\sum b_{n}$ converges, yet the series is divergent for $t=\pi/2$. Of course (1.8) is not satisfied, but $\sum_{n}^{2n} |b_{\nu}| = O(1/\log n)$.

4. Proof of Theorem 4. We shall employ the following lemma.

LEMMA 1. Suppose that $B_n \ge 0$, that for some $q \ge 0$

$$(4.1) B_{n+1} \leq (1+q/n)B_n, n = 1, 2, 3, \cdots,$$

and that the sequence $\{B_n\}$ is Abel summable to B; then $B_n \rightarrow B$.

This is Lemma 5 of my paper [2]. Note that the inequalities $B_n \ge 0$ and (4.1) need only be satisfied for all large $n, n \ge n_0$, say. For the sequence $B'_n = B_{n_0}, n = 1, 2, \dots, n_0, B'_n = B_n, n > n_0$, satisfies the assumptions of the lemma, hence $\lim B_n = \lim B'_n$ exists.

Now for $nb_n + p = B_n$, from (1.9)

(4.2)
$$(1-r)\sum B_n r^n \to p \text{ as } r\uparrow 1;$$

from (1.10) and (1.11)

(4.3)
$$0 \leq B_{n+1} \leq (1+q/n)B_n, \text{ for all large } n.$$

Lemma 1 now yields

$$(4.4) B_n \to p, \text{ that is } nb_n \to 0.$$

From (4.3)

$$(4.5) (B_{n+1}-B_n) \leq n^{-1}qB_n, \text{ for } n \geq n_0, \text{ say.}$$

Write $\sum_{n}^{2n} (B_{\nu+1} - B_{\nu}) = \sum' + \sum''$, where \sum' is the sum of the positive terms, and \sum'' the rest. From (4.4) and (4.5), $\sum' = O(1)$; furthermore

$$B_{2n+1} - B_n = \sum' + \sum'' = \sum' - |\sum''|_{n=1}^{n}$$

hence $\left|\sum^{\prime\prime}\right| = B_n - B_{2n+1} + \sum^{\prime} = O(1)$. It now follows that

1944]

OTTO SZÁSZ

$$\sum_{n}^{2n} |B_{\nu+1} - B_{\nu}| = \sum' + |\sum''| = O(1);$$

this and (4.4) yield (1.8). Our theorem now follows from Theorem 3.

If we replace (1.9) by the assumption (A) $\lim nb_n = \rho$, then the trigonometric series

$$\sum (b_n - \rho n^{-1}) \sin nt = \sum \beta_n \sin nt$$

satisfies the assumptions of Theorem 4, hence it is uniformly convergent, and we get $nb_n \rightarrow \rho$, and

(4.6)
$$\sum b_n \sin nt \to \pi \rho/2 \text{ as } t \downarrow 0.$$

Combined with Theorem 3 of our paper [2] we get the theorem.

THEOREM 5. If (4.2) holds then a necessary and sufficient condition that (4.6) holds is $nb_n \rightarrow \rho$.

For b_n positive and decreasing, $\rho = 0$, the result is due to Chaundy and Jolliffe, for $\rho \neq 0$ to Hardy. For references see [2].

5. The cosine series. We shall next prove the theorem:

THEOREM 6. Suppose that

(5.1)
$$\sum_{n=1}^{2n} \left| a_{\nu} - a_{\nu+1} \right| = O(n^{-1}),$$

and that $\sum a_n$ is A bel summable, then $\sum a_n \cos nt$ is uniformly convergent.

Using Abel's formula

(5.2)
$$\sum_{n}^{m} a_{\nu} \cos \nu t = \sum_{n}^{m-1} (a_{\nu} - a_{\nu+1}) \gamma_{\nu}(t) + a_{m} \gamma_{m}(t) - a_{n} \gamma_{n-1}(t),$$

where

$$\gamma_n(t) = \frac{\sin (n+1/2)t}{2 \sin (t/2)} \cdot$$

As in §3 it follows from (5.1) that $\lim a_n$ exists, and now Abel summability of $\sum a_n$ implies that $a_n \rightarrow 0$. Furthermore

(5.3)
$$\sum_{1}^{\infty} |a_n - a_{n+1}| < \infty$$
, $\sum_{n}^{\infty} |a_n - a_{n+1}| = O(n^{-1})$, $na_n = O(1)$.

Hence, by a theorem of Littlewood, $\sum a_n$ converges.

Now (5.2) yields uniform convergence of $\sum a_n \cos nt$ in $\epsilon \leq t \leq \pi$, $\epsilon > 0$. Let

862

[December

1944]

$$\sum_{1}^{\infty} a_n \cos nt = \phi(t), \qquad 0 < t \leq \pi.$$

We write

$$\sum_{1}^{\infty} a_{\nu} \cos \nu t = \sum_{1}^{n} + \sum_{n+1}^{\infty} = V_{1}(t) + V_{2}(t),$$

say, where $n = [\epsilon^{-1}t^{-1}]$. Now from (5.2)

$$V_{2}(t) = \sum_{n+1}^{\infty} (a_{\nu} - a_{\nu+1}) \gamma_{\nu}(t) - a_{n+1} \gamma_{n}(t),$$

hence

(5.4)
$$|V_{2}(t)| < t^{-1}\pi \left(|a_{n+1}| + \sum_{n+1}^{\infty} |a_{n} - a_{n+1}| \right)$$
$$= t^{-1}O(n^{-1}) = \epsilon O(1).$$

To estimate V_1 put $\sum_{n=1}^{\infty} a_r = r_n$, then $r_1 = s$, and

$$V_1 = s \cos t - r_{n+1} \cos nt + 2 \sum_{\nu=1}^{n} r_{\nu} \sin (t/2) \sin (\nu + 1/2)t,$$

hence

(5.5)
$$|V_{1}(t) - s \cos t| \leq |r_{n+1}| + t \sum_{2}^{n} |r_{r}|$$
$$\leq |r_{n+1}| + \epsilon^{-1} n^{-1} \sum_{2}^{n} |r_{r}| = \epsilon^{-1} o(1)$$

as $t\to 0$. From (5.4) and (5.5) $\limsup_{t\to 0} |\phi(t)-s| \leq \epsilon$, ϵ being arbitrary, we get $\phi(t) \to s$, as $t\to 0$. Our theorem now follows from Theorem I. The example $\sum 2^{-n} \cos 2^n t$ shows that na_n need not have a limit.

Here is an alternative proof for the continuity of $\phi(t)$ at t=0: From (5.2)

$$\phi(t) = -a_1/2 + 2^{-1} \sum_{1}^{\infty} (a_n - a_{n+1}) \cos nt + 2^{-1} \cos (t/2) \sum_{1}^{\infty} (a_n - a_{n+1}) \frac{\sin nt}{\sin (t/2)};$$

clearly $\sum (a_n - a_{n+1}) \cos nt$ is uniformly convergent. Furthermore

$$\sum_{1}^{\infty} (a_n - a_{n+1}) \sin nt = \sum_{1}^{\infty} n(a_n - a_{n+1}) \frac{\sin nt}{n} = \sum_{1}^{\infty} a_n' \frac{\sin nt}{n},$$

where

OTTO SZÁSZ

$$a'_{n} = n(a_{n} - a_{n+1}), \qquad \sum_{n}^{2n} |a'_{\nu}| = O(1), \text{ by } (5.1).$$

Now $\sum_{1}^{n} a_{\nu}' = \sum_{1}^{n+1} a_{\nu} - (n+1)a_{n+1}$; $\sum a_{n}$ being convergent, it follows that $n^{-1} \sum_{1}^{n} \nu a_{\nu} \rightarrow 0$, and $\sum a_{n}'$ is (C, 1) summable to *s*, hence by Theorem 4 of our paper [3]

$$\sum_{1}^{\infty} a'_{n} \frac{\sin nt}{nt} \to \sum_{1}^{\infty} a_{n} = s, \text{ as } t \to 0.$$

Thus $\phi(t)$ is continuous at t=0.

Theorems 3 and 6 combined yield the theorem:

THEOREM 7. Suppose that

$$\sum_{n=1}^{2n} \left| c_{\nu} - c_{\nu+1} \right| = O(n^{-1}) \quad as \quad n \to \infty,$$

and that $\sum c_n$ is Abel summable; then the power series $\sum c_n z^n$ is uniformly convergent in the circle $|z| \leq 1$.

It suffices to consider the circle |z| = 1; suppose first that the c_n are real. The uniform convergence of $\sum c_n \cos nt$ follows from Theorem 6; it also follows that $n^{-1}\sum_{1}^{n}\nu c_n \rightarrow 0$, and Theorem 3 now yields the uniform convergence of $\sum c_n \sin nt$. If the c_n are complex, $c_n = a_n + ib_n$, then apply the result just obtained to $\sum a_n z^n$, $\sum b_n z^n$. This proves Theorem 7.

6. Further theorems on cosine series. Our next theorem is:

THEOREM 8. Suppose that for some constants $p \ge 0$ and $q \ge 0$

(6.1) $0 \leq (n+1)s_{n+1} - ns_n + p \leq (1+q/n)[ns_n - (n-1)s_{n-1} + p],$ $s_n = \sum_{1}^{n} a_r$, and that $\sum_{n} a_n$ is Abel summable; then $na_n \rightarrow 0$, and $\sum_{n} a_n \cos nt$ is uniformly convergent.

Put $ns_n - (n-1)s_{n-1} + p = \delta_n = s_n + (n-1)a_n + p$, $s_0 = 0$, then $\sum_1^n \delta_r = n(s_n + p) \ge 0$, $s_n \ge -p$, hence by a well known theorem of Tauberian type $\sum a_n$ is (C, 1) summable, thus the sequence $\{\delta_n\}$ is (C, 2) summable. This and $0 \le \delta_{n+1} \le (1+q/n)\delta_n$ imply by Lemma 1 that $\lim \delta_n$ exists, $\delta_n \rightarrow \delta$, say. It follows that $n^{-1} \sum_1^n \delta_r = s_n + p \rightarrow \delta$, or $s_n \rightarrow \delta - p = s$, and now

$$(6.2) na_n = \delta_p - s_n + a_n - p \to 0$$

Next from (6.1)

[December

864

$$(6.3) \qquad \qquad \delta_{n+1} - \delta_n \leq (q/n)\delta_n$$

furthermore

(6.4)
$$D_n = \sum_{n=1}^{2n} (\delta_{\nu+1} - \delta_{\nu}) = \delta_{2n+1} - \delta_n = O(1).$$

Write $D_n = D' + D''$, where D' denotes the sum of positive terms, $D'' = D_n - D'$. From (6.3)

$$0 \leq D' \leq q \sum_{n}^{2n} \nu^{-1} \delta_{\nu} = O(1),$$

and now from (6.4), $|D^{\prime\prime}| = O(1)$, hence

$$\sum_{n}^{2n} \left| \delta_{\nu+1} - \delta_{\nu} \right| = O(1).$$

Also $\delta_{\nu+1} - \delta_{\nu} = (\nu+1)(a_{\nu+1} - a_{\nu}) + 2a_{\nu}$, thus

$$\sum_{n}^{2n} \nu |a_{\nu+1} - a_{\nu}| \leq O(1) + 2 \sum_{n}^{2n} |a_{\nu}|.$$

But from (6.2), $\sum_{n=1}^{2n} |a_{\nu}| = O(1)$, hence

$$\sum_{n}^{2n} |a_{p+1} - a_{p}| = O(n^{-1}).$$

Our theorem now follows from Theorem 6.

We next prove the following analogue to Lemma 1:

LEMMA 2. Suppose that $B_n \ge 0$ for $n > n_0$, that for some q > 0

(6.5)
$$B_{n+1} \ge (1 - q/n)B_n, \qquad n > n_0,$$

and that (A) $\lim B_n = B$; then $B_n \rightarrow B$.

We may assume that q/n < 1 for $n > n_0$; then from (6.5)

$$\sum_{n}^{n+\kappa} B_{\nu} \geq B_{n} \sum_{\nu=0}^{\kappa} (1-q/n)^{\nu} = \frac{nB_{n}}{q} \left\{ 1-(1-q/n)^{\kappa+1} \right\}, \quad n > n_{0},$$

hence

(6.6)

$$B_{n} \leq \frac{q}{n} \left(B_{n+\kappa}' - B_{n-1}' \right) \left\{ 1 - (1 - q/n)^{\kappa+1} \right\}^{-1}, \text{ where}$$

$$B_{n}' = \sum_{1}^{n} B_{p}.$$

[December

Choose $\kappa = [\delta n]$, where $\delta > 0$; from Abel summability and from $B_n \ge 0$, it follows that $n^{-1}B'_n \rightarrow B$. Now from (6.6)

$$\limsup B_n \leq \frac{q\delta B}{1 - \exp(-q\delta)}$$

letting $\delta \downarrow 0$, we get

 $\limsup B_n \leq B.$

Similarly for $n - \kappa > n_0$

$$\sum_{\nu=0}^{\kappa} B_{n-\nu} \leq B_n \sum_{\nu=0}^{\kappa} \left(1 - \frac{q}{n-\kappa} \right)^{-\nu}$$
$$= \frac{n-\kappa}{q} B_n \left(1 - \frac{q}{n-\kappa} \right) \left\{ \left(1 - \frac{q}{n-\kappa} \right)^{-(\kappa+1)} - 1 \right\},$$

hence

$$B_n \ge (q/(n-\kappa-q))(B'_n - B'_{n-\kappa-1})\{(1-q/(n-\kappa))^{-(\kappa+1)} - 1\}^{-1}.$$

Let now $\kappa = [n\delta]$, $0 < \delta < 1$, then

lim inf
$$B_n \ge \frac{q\delta}{1-\delta} B\left(\exp \frac{q\delta}{1-\delta} - 1\right)^{-1}$$
,

and $\delta \downarrow 0$ yields lim inf $B_n \ge B$. This proves the lemma.

THEOREM 9. Suppose that for some constants $p \ge 0$, $q \ge 0$,

(6.7)
$$(n+1)s_{n+1} - ns_n + p \\ \ge (1-q/n)[ns_n - (n-1)s_{n-1} + p] \ge 0,$$

and that (A) $\lim s_n = s$ exists. Then $na_n \rightarrow 0$ and $\sum a_n \cos nt$ is uniformly convergent.

As in the proof of Theorem 8, $s_n \ge -p$, hence $\sum a_n$ is (C, 1) summable; then by Lemma 2, $\delta_n \rightarrow \delta$, $na_n \rightarrow 0$. Next from (6.7)

(6.8)
$$\delta_{n+1} - \delta_n \ge -qn^{-1}\delta_n, \text{ and}$$
$$D_n = \sum_{n}^{2n} (\delta_{\nu+1} - \delta_{\nu}) = \delta_{2n+1} - \delta_n = O(1).$$

Write $D_n = D' + D''$, where D' denotes the sum of negative terms, $D'' = D_n - D'$. From (6.8), $0 \ge D' \ge -q \sum_{n=1}^{2n} \nu^{-1} \delta_{\nu}$, hence D' = O(1), and D'' = O(1); hence $\sum_{n=1}^{2n} |\delta_{\nu+1} - \delta_{\nu}| = O(1)$. The remaining part is the same as in the proof of Theorem 8.

866

7. Closing remarks. The assumption of Lemma 1 can be written as $0 \leq B_{n+1} \leq (n+q)/nB_n$, or $0 \leq (\Gamma(n+q)/\Gamma(n))B_{n+1} \leq (\Gamma(n+q+1)/\Gamma(n+1))B_n$, that is, $\Gamma(n)B_n/\Gamma(n+q)$ is decreasing. A similar lemma was proved by Hardy; for reference see [2]. Again in Lemma 2 the assumption is $B_{n+1} \geq (n-q)/nB_n \geq 0$, or

$$(\Gamma(n-q)/\Gamma(n))B_{n+1} \ge (\Gamma(n-q+1)/\Gamma(n+1))B_n \ge 0,$$

that is, $\Gamma(n)B_n/\Gamma(n-q)$ is increasing. The larger q the more general is the condition.

The differences $(n+1)s_{n+1}-ns_n=\tau_{n+1}$ are the (C, -1) means of the series $\sum a_n$, that is, $s_n = n^{-1} \sum_{1}^{n} \tau_{\nu}$ $(\tau_1 = s_1)$. The condition (6.1) may be written as

$$-(\tau_n+p) \leq \tau_{n+1}-\tau_n \leq (q/n)(\tau_n+p).$$

If it holds for some p, then it clearly holds for any p' > p. Similarly (6.7) becomes

 $\tau_{n+1}-\tau_n \geq -(q/n)(\tau_n+p) \geq -(\tau_n+p),$

and here too p may be replaced by any p' > p. Clearly summability (C, -1) of the series $\sum a_n$ is equivalent to convergence together with $na_n \rightarrow 0$.

We have seen that the first inequality of (6.1) and Abel summability of $\sum a_n$ imply (C, 2) summability of the sequence $\{\tau_n\}$; it follows from a theorem of Tauberian type that $\sum a_n$ converges. It is an open question whether this and $\tau_n \ge -p$, $n=1, 2, 3, \cdots$, imply uniform convergence of $\sum a_n \cos nt$ at t=0. Theorem IV asserts that this is the case if $\sum a_n \cos nt$ is the Fourier series of a function continuous at t=0. However it is doubtful whether even (C, -1) summability of $\sum a_n$ itself implies uniform convergence of $\sum a_n \cos nt$, or continuity of the corresponding function at t=0.

References

1. L. Fejér, Über Potenzreihen, deren Summe im abgeschlossenen Konvergenzkreise überall stetig ist, Sitzungsberichte der Kgl. Bayerischen Akademie der Wissenschaften, 1917, pp. 33-50.

2. O. Szász, On uniform convergence of Fourier series, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 587-595.

3. ——, On Abel and Lebesgue summability, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 885-893.

UNIVERSITY OF CINCINNATI