
ON UNIFORM CONVERGENCE OF TRIGONOMETRIC SERIES 

OTTO SZÂSZ 

1. Introduction. The following theorems have been proved previ
ously.1 

THEOREM I. If the f unction <f>(t) is throughout continuous, periodic of 
period 2TT, <f>(t) =<£(-*) =<£(2ir+0> 

(1.1) <t>(t) ~ — + 22 an cos nt, 
2 i 

and if 

(1.2) nan > - K, 

for some constant K, and all n, then the series (1.1) is uniformly conver
gent (on the real axis). 

THEOREM II. If f(t) is everywhere continuous, periodic of period 2ir' 
f(t)=-f(-o, 

00 

(1.3) ƒ(/) ~ 2 > * sin w*, 
l 

and if 

(1.4) nbn> - K, n - 1, 2, 3, • • • , 

then the series (1.3) is uniformly convergent. 

THEOREM III (CHAUNDY AND JOLUFFE). The Fourier series (1.3) 
is uniformly convergent, if 

(1.5) bn ^ in+i > 0, and if nbn ~> 0. 

Note that here no explicit assumption is made on f(t). 

THEOREM IV. If <j>(t) is continuous at / = 0, and if 
Xn 

(1.6) lim lim sup ]T) (\av \ — av) =* 0, 
X i l »-»oo n 

then the series (1.1) is uniformly convergent at J = 0. (That is, sn(tn)—*s 
whenever tn—>0.) 

Presented to the Society, April 29, 1944; received by the editors April 18, 1944. 
1 Cf. [2] and the references given there; numbers in brackets refer to the literature 

cited at the end of this paper. 
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THEOREM V. !ƒƒ(/) is continuous a/ 7 = 0, and if 
Xn 

(1.7) lim limsup £ (| fc| - h) - 0, 

then^îvby — oin), and the series (1.3) is uniformly convergent at / = 0. 

Some more general results are given in the present paper. In par
ticular : 

THEOREM 1. Under the assumptions of Theorem IV the series (1.1) 
converges uniformly at each point of continuity of <j>(t). 

THEOREM 2. Under the assumptions of Theorem V the series (1.3) con
verges uniformly at each point of continuity of ƒ(/). 

Clearly Theorems 1 and 2 include Theorems I and II respectively. 
Either of the following two theorems includes Theorem III. 

THEOREM 3. Suppose that 
2n 

(1.8) 22 I *> - -ftr+i | = Ofa-1) as n-+ <*>, 
n 

awd /Aa/ 
00 

(1.9) (1 - r ) 2 > J n ' w - > 0 as rT 1; 
l 

then the trigonometric series 22^» s*n nl ^s uniformly convergent. 

Note that the assumptions refer solely to the coefficients bn. 

THEOREM 4. Suppose, for some constants p g£ 0, q à 0, 

(1.10) «i„ + ^ = ^ ^ 0, 

that 

(1.11) Bn+i ^ (1 + n-~lq)Bn, for all large ny 

and that (1.9) holds. Then nbn—>0 and the trigonometric series^bn sin nt 
is uniformly convergent. 

We also give (in §§S and 6) analogous theorems for cosine series; 
here the partial sums ^Jlav=$n play a similar role as the sequence 
{nbn} for the sine series. However convergence of the series^av does 
not carry as far as existence of the limit lim nbn. It is for this reason 
that no such theorems have been established hitherto for cosine se
ries. For details see §§5,6 and 7. 
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2. Proof of Theorems 1 and 2. We have proved [2] that under the 
assumptions of Theorem IV 

Xn 

(2.1) lim lim sup 23 I av | = 0. 

If <f>(t) is continuous at to, then the Fourier series 

*(*o + ») + *(*o ~ 0) 
2 

*(/o + 0) - <K*o - 0) 

23 #n cos w/o cos nd, 

23 aw sin w/o sin nO 

satisfy the assumptions of Theorems IV and V respectively, hence are 
uniformly convergent at 0 = 0. This proves Theorem 1. The proof of 
Theorem 2 follows on quite similar lines, since it has been proved [2] 
that 

Xn 

(2.2) lim lfan sup 23 | iv | = 0. 
X j l ft-*» w 

It is clear from our proof that the assumptions of our theorems can be 
replaced by the sole assumptions (2.1) and (2.2) respectively. 

We remark that in Theorems IV and V the assumptions (1.6) and 
(1.7) cannot be replaced by 

2n 

23 I (h | = 0(1) and 23 an converges, 
n 

In n 

231 M =0(1) and 2 * - o(n), 
n 1 

respectively. We give an example, suggested by a construction due 
toFejér [ l] . 

Let Pn(z)-I£è*/(n-v)-J£i**/(v+l)f then |P»(s)| <6 for 
|*| ^ 1 . Let Mn = 2n2, Kn = 2w(n+1), n = l, 2, 3, • • • , and consider the 
polynomial series 23 rw~22MwPJCn(*e*/n). This series is clearly uniformly 
convergent for 1*1 ^ 1, the degree of the nth. term is 2Kn+/jn — 1 <jun+i, 
hence writing out the polynomials successively we get a power series, 
convergent for | z\ < 1:23î°£nSn = F(z), and F(eu) is the Fourier power 
series of a continuous function. The structure of Pn easily yields 
23nW[£v| =0(1). It can be proved, as in Fejér's example, that the se
ries 2lcne

int converges for each t, uniformly in € ^ ^ 2 T T —€, €>0; but 
neither component converges uniformly at / = 0. The same is true for 
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the series ̂ an cos nt, ^an sin nt, where an =* R(cn) ; ̂ an converges, so 
that]£?ra„ = 0(w). Again, using Fejér's device, and replacing eiln by 
eitnf where the sequence {/w} is everywhere dense in (0, 27r), we get a 
continuous function with a Fourier series and its conjugate nonuni-
formly convergent everywhere, while \cn\ is the same as before. 

3. Proof of Theorem 3. It follows from (1.8) that lim bn exists, and 
now from (1.9) that lim &» = 0. Furthermore 

2* K—1 2 * + 1 1 

El »> - fc«l s E E K - M - E -o(i) - o(i), 
1 w-0 2n -6 

hence 
oo 

(3.1) E | k - » H - i | < » . 

Moreover 

(3.2) 

oo oo n'2*"*** 

EI»r-»H-l| ^ I S |* ,- i ,+l | 
n <c-»0 n»2 K 

hence 
00 

(3.3) nbn - » E (fc- ~ fc+d = 0(1). 
n 

It was proved by Littlewood that boundedness of a sequence and 
Abel summability imply (C, 1) summability; if we apply this to the 
sequence {nbn} it follows from (1.9) and (3.3) that 

(3.4) 2 > » , « o(n). 
l 

Next, from Abel's formula 

(3.5) E »F sin rf - E (J ' ~ »H-i)r,(0 + bmTm(t) - hT^t), 
n n 

where 
cos */2 - cos (n + 1/2)/ 

rn( /) s= • > 

2 sin t/2 

hence in any interval € ̂  tS 2TT — e 
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]£ bv sin vt < €~%EI bv - i,+i| + 2é-Hr(| bn\ +\bm\). 

Thus the series 2 ô w sin w/ is uniformly convergent in e£t£2ir-- €, 
€>0. Let 

00 

X on sin nt = ƒ(*) ; 
l 

we shall prove next that ƒ(/)—>0 as /1 0. We write 

ƒ(') - ( È + £ V sin ri = Ui(t) + 17,(0, 
\ 1 n + l / 

say, where w= [e-"1/-1]. Now, employing (3.2), (3.3) and (3.5) 

| U%(t) \<tnic(i,\bp- i,+i| + | bn+1\) 
\ n+l / 

(3.6) > n + l 

- t-Winr1) = 60(1). 

As to Ui(t), we have 

* sin vt fiz* sin nt 
JJx = 2^ vbv = 2L, v»&* + vn — > 

1 V l W 

where 

Vn = ]C "&"» An = A 
1 w 

sin nt sin w/ sin (n + l)t 

n+l 

We have 

An = I (A cos nx)dx « i£ I sn(l — 2;)d#, 
•/ o •/ o 

z = etx, 

hence 

and 

An < 
•J o 

z\dx< t2
} 

(3.7) 
l̂ iWl < / , Zkl + »r1|«»| 

i 

i 

as U 0 , by (3.4). 
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Now (3.6) and (3.7) yield 

limsup | f(t) | g c; 

t being arbitrary, we get f(t)-~»0 as /~»0. In view of (3.3) uniform con
vergence now follows from Theorem II. 

We remark that under the assumptions of Theorem 3 the sequence 
{nbn} need not have a limit. This is seen from the example 

nbn = 1 for n = 2", v = 0, 1, 2, • • • , bn = 0 otherwise. 

Moreover in this case ôn è 0 and ]£&n is convergent. 
On the other hand for the example £ " ( " - 1 ) " sin (2n — l)t/n log nf 

nbn—»0, 2J&„ converges, yet the series is divergent for /=7r/2. Of 
course (1.8) is not satisfied, bu t£^ n | bp\ =0(l / log n). 

4. Proof of Theorem 4. We shall employ the following lemma. 

LEMMA 1. Suppose that Bn è 0, that for some q è 0 

(4.1) J3n+1 g (1 + g/»)**, n - 1, 2, 3, • • • , 

and that the sequence {3„} is Abel summable to B\ then Bn—>B. 

This is Lemma 5 of my paper [2]. Note that the inequalities jBn^0 
and (4.1) need only be satisfied for all large nf n^n0l say. For the se
quence Bn —Bnv « « I , 2, • • • , n0, B£ =£,», n>n0, satisfies the as
sumptions of the lemma, hence lim Bn == lim B£ exists. 

Now for nbn+p=Bni from (1.9) 

(4.2) ( i _ r ) £ £ n r « _ » £ a s f t l ; 

from (1.10) and (1.11) 

(4.3) 0 ^ Bn+x S (1 + q/n)Bn, for all large n. 

Lemma 1 now yields 

(4.4) Bn->p, that is wiw->0. 

From (4.3) 
(4.5) (Bn+1 - Bn) g n^qBny for » è #0, say. 

WriteZn n(^+i~5,) - £ ' + £ " . where £ ' is the sum of the positive 
terms, and ] £ " the rest. From (4.4) and (4.5), £ ) ' « 0(1) î furthermore 

iWi-s» = Z' + Z" = Z ' - IZ" l . 
hence | £ " | - B . - S ^ + E ' - O U ) . It now follows that 
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2n 

EliWi-iM-E' + IE'l-oa); 
n 

this and (4.4) yield (1.8). Our theorem now follows from Theorem 3. 
If we replace (1.9) by the assumption (A) lim #&n=*p, then the trig

onometric series 

X) (fin — pw""1) sin nt = 52 Pn s*n n* 

satisfies the assumptions of Theorem 4, hence it is uniformly conver
gent, and we get w&w-»p, and 

(4.6) X) n̂ sin nt —> 7rp/2 as U 0. 

Combined with Theorem 3 of our paper [2] we get the theorem. 

THEOREM 5. If (4.2) holds then a necessary and sufficient condition 
that (4.6) holds is nbn—>p. 

For bn positive and decreasing, p^O, the result is due to Chaundy 
and Jolliffje, for p 5*0 to Hardy. For references see [2]. 

5. The cosine series. We shall next prove the theorem: 

THEOREM 6. Suppose that 
2n 

(5.1) EK-OM-il-OOr-1), 
n 

and that£an is Abel summable, then^an cos nt is uniformly convergent. 

Using Abel's formula 

(5.2) Yé av COS Vt = ]£ (<** ~ ÖF+I)Y>(*) + «WYmW - 0n7n-i(*), 
n w 

where 
sin (II + 1/2)* 

7 * ( ' ) = S 2sin(*/2) ' 

As in §3 it follows from (5.1) that lim an exists, and now Abel sum-
mability of Y,an implies that a„—»0. Furthermore 

00 00 

(5.3) 2 I an - <*n+l 1 < « , Z) | «r - <M-11 "» OCfT1), ^0* « 0(1). 
1 n 

Hence, by a theorem of Littlewood, ^an converges. 
Now (5.2) yields uniform convergence of ^an cos nt in e£/;£ir, 

€>0. Let 
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oo 

23 0» cos nt « #(*)> 0 < t ^ ir. 
l 

We write 

1 1 » + l 

say, where w= [e"-1/""1]. Now from (5.2) 
00 

y2(f) = 23 (a„ - a„+i)7,(/) - 0*+iYnW, 
n+l 

hence 

,e ,x I F*W I < ^ * ( | 0n+l| + E l O, - «H-ll) 
(5.4) \ n+i / 

= r 1 ^ - 1 ) - €0(i). 

To estimate V% put 2 3 ^ s ^ > then fi = 5, and 
n 

Fi = 5 cos / — rn+i cos #/ + 2 23 f ' S^n (*/2) sin (*> + 1/2)/, 
2 

hence 
n 

I Fi(0 - * cos / | Ü I r,H.i| + < 2 I r,| 
(5.5) 2

 n 

g | r n + 1 |+«- 1 »- 1 i ; | f r | - é - y i ) 
2 

as /—»0. From (5.4) and (5.5) lim sup^o |#(0~~s| ^€» € being arbi
trary, we get <£(/)—»$, as /—>0. Our theorem now follows from Theorem 
I. The example 232~w cos 2nt shows that nan need not have a limit. 

Here is an alternative proof for the continuity of <t>(t) at / = 0: 
From (5.2) 

00 

<j>(t) = — ai/2 + 2~123 (an — #n+i) cos nt 
1 

JL sin nt 
+ 2-1 cos (//2) E (*» - **+i) . , ,„, Î 

1 sin (t/2) 

clearly 23 fan—Gn+i) cos nt is uniformly convergent. Furthermore 

sin nt A . sin nt 
2 3 fan - 0n+l) Sin W* « 2 3 «fan - #n+l) « 2 3 an ' ; 

1 1 n 1 n 

where 
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< = n{an - aw+1), ]£ | a/ | = 0(1), by (5.1). 
n 

Now 23?av ~]Cï+la*"""(w+l)an+iï 23an being convergent, it follows 
that n~12?|'0r—>0, and J^a»' is (C, 1) summable to s, hence by Theo
rem 4 of our paper [3 ] 

* sin /** * 

1 W* i 

Thus </>(t) is continuous at / = 0. 
Theorems 3 and 6 combined yield the theorem : 

THEOREM 7. Suppose that 

2n 

23 | £, ~ <V+i | ~ 0(w~1) as w —> oo, 
n 

and that ^cn is Abel summable; then the power series ^cnz
n is uni

formly convergent in the circle \z\ g 1. 

It suffices to consider the circle i^l—l; suppose first that the cn 

are real. The uniform convergence of 2jcn cos nt follows from Theo
rem 6; it also follows that n -^ ï^—^O, and Theorem 3 now yields the 
uniform convergence of ^2cn sin nt. If the cn are complex, cn=an+iftn» 
then apply the result just obtained to ]Ca»*w» 23&nZw. This proves 
Theorem 7. 

6. Further theorems on cosine series. Our next theorem is: 

THEOREM 8. Suppose that for some constants pèzO and q<zO 

(6.1) 0 g (n + lK+i - nsn + p g (1 + q/n) [nsn - (n - lK_i + p], 

sn —Xa0*» and thatYjin is Abel summable; then waw—»0, and ]T/*n c°s nt 
is uniformly convergent. 

Put nsn— (n — l)$tt-i + £ = 5n — $n + (n — l)an + £, $o = 0, then 
^L*8p'=n(sn+p)*z0, SnsZ—p, hence by a well known theorem 
of Tauberian type ^2an is (C, 1) summable, thus the sequence {Sn} 
is (C, 2) summable. This and 0 g 5w+i ̂  (1 +q/n) 8n imply by Lemma 1 
that lim 5n exists, 5»—>8, say. It follows that n-1Y%8p — sn+p~~>8, or 
sn—>S—p—s, and now 

(6.2) waw = 8, - *n + an - ƒ> -» 0. 

Next from (6.1) 
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(6.3) ôn+1 - S% g (q/n)K 

furthermore 
2n 

(6.4) Dn ** £ (ÔP+1 - 5.) « ô2n+i - 8W - 0(1). 
n 

Write Z>n = -£>'+£>", where Z>' denotes the sum of positive terms, 
D"=Dn-D\ From (6.3) 

2w 

O g Z ) ^ gX)"""1^ = 0(1), 
n 

and now from (6.4), \D"\ =0(1), hence 

E l * H - l - * r | =0(1). 
n 

Also ov+i — 5„ = (y+l)(av+i—av)+2a„, thus 

f ^ k i - (h\ g 0(1) + 2X)| a,|. 
n n 

But from (6 .2 ) ,2? | a , | =0(1), hence 
2n 

2 3 | av+i — o , | = O'C»"1)-
n 

Our theorem now follows from Theorem 6. 
We next prove the following analogue to Lemma 1 : 

LEMMA 2. Suppose that Bn^Ofor n>n^ that for some q>0 

(6.5) Bn+1 â (1 — q/n)Bn, n > n0, 

and that (A) lim Bn = B ; then Bn—>B. 

We may assume that q/n<l for n>no\ then from (6.5) 
n+K K ftfi 

E S ^ £ » Z ( 1 - q/n)' = — - {1 - (1 - q/n)-+1}, n > n0> 
n r-0 Ç 

hence 

Bn g — ( # * . - fCi){1 - (1 - q/n)*»}-\ where 
(6.6) : 
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Choose K = [Sw], where S > 0 ; from Abel summability and from J3»g£0, 
it follows that n~lB'n—>B. Now from (6.6) 

qÔB 
lim sup Bn S 

1 — exp (— qS) 

letting h i 0, we get 

lim sup Bn â B. 

Similarly for n — K > n0 

2J Bn-.v g* Bn 22, ( 1 I 

q \ n — K/ \\ n — K/ ) 

hence 

Bn £ (q/(n - jc - g))(I^ - iC« - i ) { ( l - g/(» - *))-(l(+1) - l } - * . 

Let now /c= [»ô], 0 < 5 < 1, then 

tf ( <$> V 1 

lim inf J5W ^ JBI exp 1) , 
1 - 5 \ ^ 1 — 5 / 

and 5 \ 0 yields lim inf J5 W ^5 . This proves the lemma. 

THEOREM 9. Suppose that for some constants p^0t gèO, 

(6 7̂  ^ + 1 ^ w + 1 "" W5n + * 
à (1 - g/»)[iWn - (» - l)sn-i + # ] è 0 , 

and /Aa/ (A) lim sn ~s exists. Then nan—>0 and ]£a„ cos nt is uniformly 
convergent. 

As in the proof of Theorem 8, sn^ —pi hence 2^aw is (C, 1) sum-
mable; then by Lemma 2, 8n—>ô, nan—>0. Next from (6.7) 

àn+i ~ àn à - gw-*1^, and 

(6.8) *» 
A» = Z («H-X - 8.) - 52n+1 - 8n - 0(1). 

n 

Write Dn—D'+D", where Z>' denotes the sum of negative terms, 
D"~Dm-D'. From (6.8), Q ^ I > ' ^ - g E ' V ^ ô , , , hence D ' - O ( l ) , and 
Z)"=:0(1) ; hence J%n\ ôv+i-Ô>\ = 0 ( 1 ) . The remaining part is the 
same as in the proof of Theorem 8. 
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7. Closing remarks. The assumption of Lemma 1 can be writ
ten as 0 £ J3n+i sS (» + q)/nBn, ' or 0 £ (T(n + g)/r(w))5n+1 

^( r (w+2+l ) / r (w+l ) )B« , that is, T(n)Bn/T(n+q) is decreasing. A 
similar lemma was proved by Hardy; for reference see [2]. Again in 
Lemma 2 the assumption is Bn+iH~(n~-q)/iiBn*zO, or 

(r(ii - q)/T(n))Bn^ £ (r(n - q + 1)/T(n + l))Bn £ 0, 

that is, T(n)Bn/r(n—q) is increasing. The larger q the more general 
is the condition. 

The differences (n+l)sn+i—W5n=Tn+i are the (C, —1) means of the 
series 2^an, that is, sn = w~l]CïT, (TI = $I). The condition (6.1) may be 
written as 

~ 0» + p) S rn+i - TnS (q/n)(rn + p). 

If it holds for some p, then it clearly holds for any P'>p. Similarly 
(6.7) becomes 

Tn+i ~ rn è - (q/n){rn + p) è ~ (rM + p), 

and here too p may be replaced by any p'>p. Clearly summability 
(C, —1) of the series X)^« is equivalent to convergence together with 
nan—*0. 

We have seen that the first inequality of (6.1) and Abel summabil
ity of ^2an imply (C, 2) summability of the sequence {rn} ; it follows 
from a theorem of Tauberian type t h a t ^ a w converges. It is an open 
question whether this and r n è —p, w = l, 2, 3, • • • , imply uniform 
convergence of X/*n cos nt at t = 0. Theorem IV asserts that this is 
the case if X)a» c o s n^ '1S ^ e Fourier series of a function continuous 
at / = 0. However it is doubtful whether even (C, —1) summability 
of X)ö« itself implies uniform convergence of 23a» c o s n^ o r continuity 
of the corresponding function at / = 0. 
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