ON UNIFORM CONVERGENCE OF TRIGONOMETRIC SERIES

otto sZÅsz

1. Introduction. The following theorems have been proved previously. ${ }^{1}$

Theorem I. If the function $\phi(t)$ is throughout continuous, periodic of period $2 \pi, \phi(t)=\phi(-t)=\phi(2 \pi+t)$,

$$
\begin{equation*}
\phi(t) \sim \frac{a_{0}}{2}+\sum_{1}^{\infty} a_{n} \cos n t, \tag{1.1}
\end{equation*}
$$

and if

$$
\begin{equation*}
n a_{n}>-K, \tag{1.2}
\end{equation*}
$$

for some constant K, and all n, then the series (1.1) is uniformly convergent (on the real axis).

Theorem II. If $f(t)$ is everywhere continuous, periodic of period 2π, $f(t)=-f(-t)$,

$$
\begin{equation*}
f(t) \sim \sum_{1}^{\infty} b_{n} \sin n t \tag{1.3}
\end{equation*}
$$

and if

$$
n b_{n}>-K, \quad n=1,2,3, \cdots,
$$

then the series (1.3) is uniformly convergent.
Theorem III (Chaundy and Jolliffe). The Fourier series (1.3) is uniformly convergent, if

$$
\begin{equation*}
b_{n} \geqq b_{n+1}>0, \text { and if } n b_{n} \rightarrow 0 . \tag{1.5}
\end{equation*}
$$

Note that here no explicit assumption is made on $f(t)$.
Theorem IV. If $\phi(t)$ is continuous at $t=0$, and if

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \lim _{n \rightarrow \infty} \sup _{n} \sum_{n}^{\lambda n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=0, \tag{1.6}
\end{equation*}
$$

then the series (1.1) is uniformly convergent at $t=0$. (That is, $s_{n}\left(t_{n}\right) \rightarrow s$ whenever $t_{n} \rightarrow 0$.)

Presented to the Society, April 29, 1944; received by the editors April 18, 1944.
${ }^{1} \mathrm{Cf}$. [2] and the references given there; numbers in brackets refer to the literature cited at the end of this paper.

Theorem V. If $f(t)$ is continuous at $t=0$, and if

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \lim _{n \rightarrow \infty} \sum_{n}^{\lambda n}\left(\left|b_{\nu}\right|-b_{v}\right)=0 \tag{1.7}
\end{equation*}
$$

then $\sum_{1}^{n} \nu b_{\nu}=o(n)$, and the series (1.3) is uniformly convergent at $t=0$.
Some more general results are given in the present paper. In particular:

Theorem 1. Under the assumptions of Theorem IV the series (1.1) converges uniformly at each point of continuity of $\phi(t)$.

Theorem 2. Under the assumptions of Theorem V the series (1.3) converges uniformly at each point of continuity of $f(t)$.

Clearly Theorems 1 and 2 include Theorems I and II respectively. Either of the following two theorems includes Theorem III.
Theorem 3. Suppose that

$$
\begin{equation*}
\sum_{n}^{2 n}\left|b_{\nu}-b_{\nu+1}\right|=O\left(n^{-1}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

and that

$$
\begin{equation*}
(1-r) \sum_{1}^{\infty} n b_{n} r^{n} \rightarrow 0 \quad \text { as } \quad r \uparrow 1 \tag{1.9}
\end{equation*}
$$

then the trigonometric series $\sum b_{n} \sin n t$ is uniformly convergent.
Note that the assumptions refer solely to the coefficients b_{n}.
Theorem 4. Suppose, for some constants $p \geqq 0, q \geqq 0$,

$$
\begin{equation*}
n b_{n}+p=B_{n} \geqq 0 \tag{1.10}
\end{equation*}
$$

that

$$
\begin{equation*}
B_{n+1} \leqq\left(1+n^{-1} q\right) B_{n}, \quad \text { for all large } n \tag{1.11}
\end{equation*}
$$

and that (1.9) holds. Then $n b_{n} \rightarrow 0$ and the trigonometric series $\sum b_{n} \sin n t$ is uniformly convergent.

We also give (in $\S \S 5$ and 6) analogous theorems for cosine series; here the partial sums $\sum_{1}^{n} a_{\nu}=s_{n}$ play a similar role as the sequence $\left\{n b_{n}\right\}$ for the sine series. However convergence of the series $\sum a_{\nu}$ does not carry as far as existence of the limit $\lim n b_{n}$. It is for this reason that no such theorems have been established hitherto for cosine series. For details see $\S \S 5,6$ and 7.
2. Proof of Theorems 1 and 2. We have proved [2] that under the assumptions of Theorem IV

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \sum_{n}^{\lambda n}\left|a_{\nu}\right|=0 \tag{2.1}
\end{equation*}
$$

If $\phi(t)$ is continuous at t_{0}, then the Fourier series

$$
\begin{aligned}
& \frac{\phi\left(t_{0}+\theta\right)+\phi\left(t_{0}-\theta\right)}{2} \sim \sum a_{n} \cos n t_{0} \cos n \theta \\
& \frac{\phi\left(t_{0}+\theta\right)-\phi\left(t_{0}-\theta\right)}{2} \sim \sum a_{n} \sin n t_{0} \sin n \theta
\end{aligned}
$$

satisfy the assumptions of Theorems IV and V respectively, hence are uniformly convergent at $\theta=0$. This proves Theorem 1 . The proof of Theorem 2 follows on quite similar lines, since it has been proved [2] that

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \sum_{n}^{\lambda n}\left|b_{\nu}\right|=0 \tag{2.2}
\end{equation*}
$$

It is clear from our proof that the assumptions of our theorems can be replaced by the sole assumptions (2.1) and (2.2) respectively.

We remark that in Theorems IV and V the assumptions (1.6) and (1.7) cannot be replaced by

$$
\begin{aligned}
& \sum_{n}^{2 n}\left|a_{\nu}\right|=O(1) \quad \text { and } \quad \sum a_{n} \text { converges } \\
& \sum_{n}^{2 n}\left|b_{\nu}\right|=O(1) \quad \text { and } \quad \sum_{1}^{n} \nu b_{\nu}=o(n)
\end{aligned}
$$

respectively. We give an example, suggested by a construction due to Fejér [1].

Let $P_{n}(z)=\sum_{\nu=0}^{n-1} z^{\nu} /(n-\nu)-\sum_{\nu=0}^{n-1} z^{n+\nu} /(\nu+1)$, then $\left|P_{n}(z)\right|<6$ for $|z| \leqq 1$. Let $\mu_{n}=2^{n^{2}}, \kappa_{n}=2^{n(n+1)}, n=1,2,3, \cdots$, and consider the polynomial series $\sum_{1}^{\infty} n^{-2} z^{\mu_{n}} P_{\kappa_{n}}\left(z e^{i / n}\right)$. This series is clearly uniformly convergent for $|z| \leqq 1$, the degree of the nth term is $2 \kappa_{n}+\mu_{n}-1<\mu_{n+1}$, hence writing out the polynomials successively we get a power series, convergent for $|z|<1: \sum_{1}^{\infty} c_{n} z^{n}=F(z)$, and $F\left(e^{i t}\right)$ is the Fourier power series of a continuous function. The structure of P_{n} easily yields $\sum_{n}^{2 n}\left|c_{\nu}\right|=O(1)$. It can be proved, as in Fejér's example, that the series $\sum c_{n} e^{\text {int }}$ converges for each t, uniformly in $\epsilon \leqq t \leqq 2 \pi-\epsilon, \epsilon>0$; but neither component converges uniformly at $t=0$. The same is true for
the series $\sum a_{n} \cos n t, \sum a_{n} \sin n t$, where $a_{n}=R\left(c_{n}\right) ; \sum a_{n}$ converges, so that $\sum_{1}^{n} \nu a_{\nu}=o(n)$. Again, using Fejér's device, and replacing $e^{i / n}$ by $e^{i t_{n}}$, where the sequence $\left\{t_{n}\right\}$ is everywhere dense in ($0,2 \pi$), we get a continuous function with a Fourier series and its conjugate nonuniformly convergent everywhere, while $\left|c_{n}\right|$ is the same as before.
3. Proof of Theorem 3. It follows from (1.8) that $\lim b_{n}$ exists, and now from (1.9) that $\lim b_{n}=0$. Furthermore

$$
\sum_{1}^{2 \kappa}\left|b_{\nu}-b_{\nu+1}\right| \leqq \sum_{n=0}^{k-1} \sum_{2^{n}}^{2^{n+1}}\left|b_{\nu}-b_{\nu+1}\right|=\sum \frac{1}{2^{n}} O(1)=O(1)
$$

hence

$$
\begin{equation*}
\sum_{1}^{\infty}\left|b_{v}-b_{v+1}\right|<\infty \tag{3.1}
\end{equation*}
$$

Moreover

$$
\begin{align*}
\sum_{n}^{\infty}\left|b_{\nu}-b_{v+1}\right| & \leqq \sum_{k=0}^{\infty} \sum_{n \cdot 2^{k}}^{n \cdot 2^{k+1}}\left|b_{v}-b_{v+1}\right| \\
& =O\left(\frac{1}{n} \sum \frac{1}{2^{k}}\right)=O\left(\frac{1}{n}\right) \tag{3.2}
\end{align*}
$$

hence

$$
\begin{equation*}
n b_{n}=n \sum_{n}^{\infty}\left(b_{v}-b_{v+1}\right)=O(1) \tag{3.3}
\end{equation*}
$$

It was proved by Littlewood that boundedness of a sequence and Abel summability imply ($C, 1$) summability; if we apply this to the sequence $\left\{n b_{n}\right\}$ it follows from (1.9) and (3.3) that

$$
\begin{equation*}
\sum_{1}^{n} \nu b_{\nu}=o(n) . \tag{3.4}
\end{equation*}
$$

Next, from Abel's formula

$$
\begin{equation*}
\sum_{n}^{m} b_{\nu} \sin \nu t=\sum_{n}^{m-1}\left(b_{\nu}-b_{\nu+1}\right) T_{\nu}(t)+b_{m} T_{m}(t)-b_{n} T_{n-1}(t) \tag{3.5}
\end{equation*}
$$

where

$$
T_{n}(t)=\frac{\cos t / 2-\cos (n+1 / 2) t}{2 \sin t / 2}
$$

hence in any interval $\epsilon \leqq t \leqq 2 \pi-\epsilon$

$$
\left|\sum_{n}^{m} b_{\nu} \sin \nu t\right|<\epsilon^{-1} \pi \sum_{n}^{\infty}\left|b_{\nu}-b_{\nu+1}\right|+2 \epsilon^{-1} \pi\left(\left|b_{n}\right|+\left|b_{m}\right|\right) .
$$

Thus the series $\sum b_{n} \sin n t$ is uniformly convergent in $\epsilon \leqq t \leqq 2 \pi-\epsilon$, $\epsilon>0$. Let

$$
\sum_{1}^{\infty} b_{n} \sin n t=f(t)
$$

we shall prove next that $f(t) \rightarrow 0$ as $t \downarrow 0$. We write

$$
f(t)=\left(\sum_{1}^{n}+\sum_{n+1}^{\infty}\right) b_{\nu} \sin \nu t=U_{1}(t)+U_{2}(t)
$$

say, where $n=\left[\epsilon^{-1} t^{-1}\right]$. Now, employing (3.2), (3.3) and (3.5)

$$
\begin{align*}
\left|U_{2}(t)\right| & <t^{-1} \pi\left(\sum_{n+1}^{\infty}\left|b_{\nu}-b_{\nu+1}\right|+\left|b_{n+1}\right|\right) \tag{3.6}\\
& =t^{-1} O\left(n^{-1}\right)=\epsilon O(1)
\end{align*}
$$

As to $U_{1}(t)$, we have

$$
U_{1}=\sum_{1}^{n} \nu b_{\nu} \frac{\sin \nu t}{\nu}=\sum_{1}^{n-1} v_{\nu} \Delta_{\nu}+v_{n} \frac{\sin n t}{n}
$$

where

$$
v_{n}=\sum_{1}^{n} \nu b_{\nu}, \quad \Delta_{n}=\Delta \frac{\sin n t}{n}=\frac{\sin n t}{n}-\frac{\sin (n+1) t}{n+1} .
$$

We have

$$
\Delta_{n}=\int_{0}^{t}(\Delta \cos n x) d x=R \int_{0}^{t} z^{n}(1-z) d x, \quad z=e^{i x}
$$

hence

$$
\left|\Delta_{n}\right|<\int_{0}^{t}|1-z| d x<t^{2}
$$

and

$$
\begin{align*}
\left|U_{1}(t)\right| & <t^{2} \sum_{1}^{n}\left|v_{\nu}\right|+n^{-1}\left|v_{n}\right| \tag{3.7}\\
& <\epsilon^{-2} n^{-1} \sum_{1}^{n} \nu^{-1}\left|v_{\nu}\right|+n^{-1}\left|v_{n}\right| \rightarrow 0
\end{align*}
$$

as $t \downarrow 0$, by (3.4).

Now (3.6) and (3.7) yield

$$
\limsup _{t \rightarrow 0}|f(t)| \leqq \epsilon ;
$$

ϵ being arbitrary, we get $f(t) \rightarrow 0$ as $t \rightarrow 0$. In view of (3.3) uniform convergence now follows from Theorem II.

We remark that under the assumptions of Theorem 3 the sequence $\left\{n b_{n}\right\}$ need not have a limit. This is seen from the example

$$
n b_{n}=1 \text { for } n=2^{\nu}, \nu=0,1,2, \cdots, \quad b_{n}=0 \text { otherwise }
$$

Moreover in this case $b_{n} \geqq 0$ and $\sum b_{n}$ is convergent.
On the other hand for the example $\sum_{2}^{\infty}(-1)^{n} \sin (2 n-1) t / n \log n$, $n b_{n} \rightarrow 0, \sum b_{n}$ converges, yet the series is divergent for $t=\pi / 2$. Of course (1.8) is not satisfied, but $\sum_{n}^{2 n}\left|b_{\nu}\right|=O(1 / \log n)$.
4. Proof of Theorem 4. We shall employ the following lemma.

Lemma 1. Suppose that $B_{n} \geqq 0$, that for some $q \geqq 0$

$$
\begin{equation*}
B_{n+1} \leqq(1+q / n) B_{n}, \quad n=1,2,3, \cdots, \tag{4.1}
\end{equation*}
$$

and that the sequence $\left\{B_{n}\right\}$ is Abel summable to B; then $B_{n} \rightarrow B$.
This is Lemma 5 of my paper [2]. Note that the inequalities $B_{n} \geqq 0$ and (4.1) need only be satisfied for all large $n, n \geqq n_{0}$, say. For the sequence $B_{n}^{\prime}=B_{n_{0}}, n=1,2, \cdots, n_{0}, B_{n}^{\prime}=B_{n}, n>n_{0}$, satisfies the assumptions of the lemma, hence $\lim B_{n}=\lim B_{n}{ }^{\prime}$ exists.

Now for $n b_{n}+p=B_{n}$, from (1.9)

$$
\begin{equation*}
(1-r) \sum B_{n} r^{n} \rightarrow p \quad \text { as } \quad r \uparrow 1 \tag{4.2}
\end{equation*}
$$

from (1.10) and (1.11)

$$
\begin{equation*}
0 \leqq B_{n+1} \leqq(1+q / n) B_{n}, \quad \text { for all large } n \tag{4.3}
\end{equation*}
$$

Lemma 1 now yields

$$
\begin{equation*}
B_{n} \rightarrow p, \quad \text { that is } n b_{n} \rightarrow 0 \tag{4.4}
\end{equation*}
$$

From (4.3)

$$
\begin{equation*}
\left(B_{n+1}-B_{n}\right) \leqq n^{-1} q B_{n}, \quad \text { for } n \geqq n_{0}, \text { say. } \tag{4.5}
\end{equation*}
$$

Write $\sum_{n}^{2 n}\left(B_{\nu+1}-B_{\nu}\right)=\sum^{\prime}+\sum^{\prime \prime}$, where \sum^{\prime} is the sum of the positive terms, and $\sum^{\prime \prime}$ the rest. From (4.4) and (4.5), $\Sigma^{\prime}=O(1)$; furthermore

$$
B_{2 n+1}-B_{n}=\sum^{\prime}+\sum^{\prime \prime}=\sum^{\prime}-\left|\sum^{\prime \prime}\right|
$$

hence $\left|\sum^{\prime \prime}\right|=B_{n}-B_{2 n+1}+\sum^{\prime}=O(1)$. It now follows that

$$
\sum_{n}^{2 n}\left|B_{\nu+1}-B_{\nu}\right|=\sum^{\prime}+\left|\sum^{\prime \prime}\right|=O(1)
$$

this and (4.4) yield (1.8). Our theorem now follows from Theorem 3.
If we replace (1.9) by the assumption (A) $\lim n b_{n}=\rho$, then the trigonometric series

$$
\sum\left(b_{n}-\rho n^{-1}\right) \sin n t=\sum \beta_{n} \sin n t
$$

satisfies the assumptions of Theorem 4, hence it is uniformly convergent, and we get $n b_{n} \rightarrow \rho$, and

$$
\begin{equation*}
\sum b_{n} \sin n t \rightarrow \pi \rho / 2 \quad \text { as } \quad t \downarrow 0 \tag{4.6}
\end{equation*}
$$

Combined with Theorem 3 of our paper [2] we get the theorem.
Theorem 5. If (4.2) holds then a necessary and sufficient condition that (4.6) holds is $n b_{n} \rightarrow \rho$.

For b_{n} positive and decreasing, $\rho=0$, the result is due to Chaundy and Jolliffe, for $\rho \neq 0$ to Hardy. For references see [2].
5. The cosine series. We shall next prove the theorem:

Theorem 6. Suppose that

$$
\begin{equation*}
\sum_{n}^{2 n}\left|a_{\nu}-a_{v+1}\right|=O\left(n^{-1}\right) \tag{5.1}
\end{equation*}
$$

and that $\sum a_{n}$ is Abel summable, then $\sum a_{n} \cos n t$ is uniformly convergent. Using Abel's formula

$$
\begin{equation*}
\sum_{n}^{m} a_{\nu} \cos \nu t=\sum_{n}^{m-1}\left(a_{\nu}-a_{\nu+1}\right) \gamma_{\nu}(t)+a_{m} \gamma_{m}(t)-a_{n} \gamma_{n-1}(t) \tag{5.2}
\end{equation*}
$$

where

$$
\gamma_{n}(t)=\frac{\sin (n+1 / 2) t}{2 \sin (t / 2)}
$$

As in §3 it follows from (5.1) that $\lim a_{n}$ exists, and now Abel summability of $\sum a_{n}$ implies that $a_{n} \rightarrow 0$. Furthermore

$$
\begin{equation*}
\sum_{1}^{\infty}\left|a_{n}-a_{n+1}\right|<\infty, \quad \sum_{n}^{\infty}\left|a_{v}-a_{v+1}\right|=O\left(n^{-1}\right), \quad n a_{n}=O(1) \tag{5.3}
\end{equation*}
$$

Hence, by a theorem of Littlewood, $\sum a_{n}$ converges.
Now (5.2) yields uniform convergence of $\sum a_{n} \cos n t$ in $\epsilon \leqq t \leqq \pi$, $\epsilon>0$. Let

$$
\sum_{1}^{\infty} a_{n} \cos n t=\phi(t), \quad 0<t \leqq \pi
$$

We write

$$
\sum_{1}^{\infty} a_{\nu} \cos \nu t=\sum_{1}^{n}+\sum_{n+1}^{\infty}=V_{1}(t)+V_{2}(t)
$$

say, where $n=\left[\epsilon^{-1} t^{-1}\right]$. Now from (5.2)

$$
V_{2}(t)=\sum_{n+1}^{\infty}\left(a_{\nu}-a_{\nu+1}\right) \gamma_{\nu}(t)-a_{n+1} \gamma_{n}(t)
$$

hence

$$
\begin{align*}
\left|V_{2}(t)\right| & <t^{-1} \pi\left(\left|a_{n+1}\right|+\sum_{n+1}^{\infty}\left|a_{\nu}-a_{v+1}\right|\right) \tag{5.4}\\
& =t^{-1} O\left(n^{-1}\right)=\epsilon O(1)
\end{align*}
$$

To estimate V_{1} put $\sum_{n}^{\infty} a_{\nu}=r_{n}$, then $r_{1}=s$, and

$$
V_{1}=s \cos t-r_{n+1} \cos n t+2 \sum_{2}^{n} r_{\nu} \sin (t / 2) \sin (\nu+1 / 2) t
$$

hence

$$
\begin{align*}
\left|V_{1}(t)-s \cos t\right| & \leqq\left|r_{n+1}\right|+t \sum_{2}^{n}\left|r_{\nu}\right| \tag{5.5}\\
& \leqq\left|r_{n+1}\right|+\epsilon^{-1} n^{-1} \sum_{2}^{n}\left|r_{\nu}\right|=\epsilon^{-1} o(1)
\end{align*}
$$

as $t \rightarrow 0$. From (5.4) and (5.5) lim $\sup _{t \rightarrow 0}|\phi(t)-s| \leqq \epsilon, \epsilon$ being arbitrary, we get $\phi(t) \rightarrow s$, as $t \rightarrow 0$. Our theorem now follows from Theorem I. The example $\sum 2^{-n} \cos 2^{n} t$ shows that $n a_{n}$ need not have a limit. Here is an alternative proof for the continuity of $\phi(t)$ at $t=0$:
From (5.2)

$$
\begin{aligned}
\phi(t)= & -a_{1} / 2+2^{-1} \sum_{1}^{\infty}\left(a_{n}-a_{n+1}\right) \cos n t \\
& +2^{-1} \cos (t / 2) \sum_{1}^{\infty}\left(a_{n}-a_{n+1}\right) \frac{\sin n t}{\sin (t / 2)}
\end{aligned}
$$

clearly $\sum\left(a_{n}-a_{n+1}\right) \cos n t$ is uniformly convergent. Furthermore

$$
\sum_{1}^{\infty}\left(a_{n}-a_{n+1}\right) \sin n t=\sum_{1}^{\infty} n\left(a_{n}-a_{n+1}\right) \frac{\sin n t}{n}=\sum_{1}^{\infty} a_{n}^{\prime} \frac{\sin n t}{n}
$$

where

$$
a_{n}^{\prime}=n\left(a_{n}-a_{n+1}\right), \quad \sum_{n}^{2 n}\left|a_{\nu}^{\prime}\right|=O(1), \quad \text { by (5.1) }
$$

Now $\sum_{1}^{n} a_{\nu}^{\prime}=\sum_{1}^{n+1} a_{\nu}-(n+1) a_{n+1} ; \sum a_{n}$ being convergent, it follows that $n^{-1} \sum_{1}^{n} \nu a_{\nu} \rightarrow 0$, and $\sum a_{n}^{\prime}$ is $(C, 1)$ summable to s, hence by Theorem 4 of our paper [3]

$$
\sum_{1}^{\infty} a_{n}^{\prime} \frac{\sin n t}{n t} \rightarrow \sum_{1}^{\infty} a_{n}=s, \quad \text { as } \quad t \rightarrow 0
$$

Thus $\phi(t)$ is continuous at $t=0$.
Theorems 3 and 6 combined yield the theorem:

Theorem 7. Suppose that

$$
\sum_{n}^{2 n}\left|c_{\nu}-c_{p+1}\right|=O\left(n^{-1}\right) \quad \text { as } \quad n \rightarrow \infty
$$

and that $\sum c_{n}$ is Abel summable; then the power series $\sum c_{n} z^{n}$ is uniformly convergent in the circle $|z| \leqq 1$.

It suffices to consider the circle $|z|=1$; suppose first that the c_{n} are real. The uniform convergence of $\sum c_{n} \cos n t$ follows from Theorem 6 ; it also follows that $n^{-1} \sum_{1}^{n} \nu c_{\nu} \rightarrow 0$, and Theorem 3 now yields the uniform convergence of $\sum c_{n} \sin n t$. If the c_{n} are complex, $c_{n}=a_{n}+i b_{n}$, then apply the result just obtained to $\sum a_{n} z^{n}, \sum b_{n} z^{n}$. This proves Theorem 7.
6. Further theorems on cosine series. Our next theorem is:

Theorem 8. Suppose that for some constants $p \geqq 0$ and $q \geqq 0$
(6.1) $0 \leqq(n+1) s_{n+1}-n s_{n}+p \leqq(1+q / n)\left[n s_{n}-(n-1) s_{n-1}+p\right]$, $s_{n}=\sum_{1}^{n} a_{\nu}$, and that $\sum a_{n}$ is Abel summable; then $n a_{n} \rightarrow 0$, and $\sum a_{n} \cos n t$ is uniformly convergent.

Put $n s_{n}-(n-1) s_{n-1}+p=\delta_{n}=s_{n}+(n-1) a_{n}+p, s_{0}=0$, then $\sum_{1}^{n} \delta_{p}=n\left(s_{n}+p\right) \geqq 0, s_{n} \geqq-p$, hence by a well known theorem of Tauberian type $\sum a_{n}$ is ($C, 1$) summable, thus the sequence $\left\{\delta_{n}\right\}$ is $(C, 2)$ summable. This and $0 \leqq \delta_{n+1} \leqq(1+q / n) \delta_{n}$ imply by Lemma 1 that $\lim \delta_{n}$ exists, $\delta_{n} \rightarrow \delta$, say. It follows that $n^{-1} \sum_{1}^{n} \delta_{p}=s_{n}+p \rightarrow \delta$, or $s_{n} \rightarrow \delta-p=s$, and now

$$
\begin{equation*}
n a_{n}=\delta_{n}-s_{n}+a_{n}-p \rightarrow 0 \tag{6.2}
\end{equation*}
$$

Next from (6.1)

$$
\begin{equation*}
\delta_{n+1}-\delta_{n} \leqq(q / n) \delta_{n}, \tag{6.3}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
D_{n}=\sum_{n}^{2 n}\left(\delta_{p+1}-\delta_{p}\right)=\delta_{2 n+1}-\delta_{n}=O(1) \tag{6.4}
\end{equation*}
$$

Write $D_{n}=D^{\prime}+D^{\prime \prime}$, where D^{\prime} denotes the sum of positive terms, $D^{\prime \prime}=D_{n}-D^{\prime}$. From (6.3)

$$
0 \leqq D^{\prime} \leqq q \sum_{n}^{2 n} \nu^{-1} \delta_{\nu}=O(1),
$$

and now from (6.4), $\left|D^{\prime \prime}\right|=O(1)$, hence

$$
\sum_{n}^{2 n}\left|\delta_{\nu+1}-\delta_{\nu}\right|=O(1) .
$$

Also $\delta_{\nu+1}-\delta_{\nu}=(\nu+1)\left(a_{\nu+1}-a_{\nu}\right)+2 a_{\nu}$, thus

$$
\sum_{n}^{2 n} \nu\left|a_{\nu+1}-a_{\nu}\right| \leqq O(1)+2 \sum_{n}^{2 n}\left|a_{\nu}\right|
$$

But from (6.2), $\sum_{n}^{2 n}\left|a_{\nu}\right|=O(1)$, hence

$$
\sum_{n}^{2 n}\left|a_{p+1}-a_{\nu}\right|=O\left(n^{-1}\right)
$$

Our theorem now follows from Theorem 6.
We next prove the following analogue to Lemma 1:
Lemma 2. Suppose that $B_{n} \geqq 0$ for $n>n_{0}$, that for some $q>0$

$$
\begin{equation*}
B_{n+1} \geqq(1-q / n) B_{n}, \quad n>n_{0} \tag{6.5}
\end{equation*}
$$

and that $(\mathrm{A}) \lim B_{n}=B$; then $B_{n} \rightarrow B$.
We may assume that $q / n<1$ for $n>n_{0}$; then from (6.5)

$$
\sum_{n}^{n+\kappa} B_{\nu} \geqq B_{n} \sum_{\nu=0}^{\kappa}(1-q / n)^{\nu}=\frac{n B_{n}}{q}\left\{1-(1-q / n)^{\kappa+1}\right\}, \quad n>n_{0}
$$

hence

$$
\begin{align*}
& B_{n} \leqq \frac{q}{n}\left(B_{n+\kappa}^{\prime}-B_{n-1}^{\prime}\right)\left\{1-(1-q / n)^{\kappa+1}\right\}^{-1}, \text { where } \\
& B_{n}^{\prime}=\sum_{1}^{n} B_{\gamma} \tag{6.6}
\end{align*}
$$

Choose $\kappa=[\delta n]$, where $\delta>0$; from Abel summability and from $B_{n} \geqq 0$, it follows that $n^{-1} B_{n}^{\prime} \rightarrow B$. Now from (6.6)

$$
\lim \sup B_{n} \leqq \frac{q \delta B}{1-\exp (-q \delta)}
$$

letting $\delta \downarrow 0$, we get

$$
\lim \sup B_{n} \leqq B
$$

Similarly for $n-\kappa>n_{0}$

$$
\begin{aligned}
\sum_{\nu=0}^{\kappa} B_{n-\nu} & \leqq B_{n} \sum_{\nu=0}^{\kappa}\left(1-\frac{q}{n-\kappa}\right)^{-\nu} \\
& =\frac{n-\kappa}{q} B_{n}\left(1-\frac{q}{n-\kappa}\right)\left\{\left(1-\frac{q}{n-\kappa}\right)^{-(\kappa+1)}-1\right\}
\end{aligned}
$$

hence

$$
B_{n} \geqq(q /(n-\kappa-q))\left(B_{n}^{\prime}-B_{n-\kappa-1}^{\prime}\right)\left\{(1-q /(n-\kappa))^{-(\kappa+1)}-1\right\}^{-1}
$$

Let now $\kappa=[n \delta], 0<\delta<1$, then

$$
\lim \inf B_{n} \geqq \frac{q \delta}{1-\delta} B\left(\exp \frac{q \delta}{1-\delta}-1\right)^{-1}
$$

and $\delta \downarrow 0$ yields $\lim \inf B_{n} \geqq B$. This proves the lemma.
Theorem 9. Suppose that for some constants $p \geqq 0, q \geqq 0$,

$$
\begin{align*}
&(n+1) s_{n+1}-n s_{n}+p \tag{6.7}\\
& \geqq(1-q / n)\left[n s_{n}-(n-1) s_{n-1}+p\right] \geqq 0
\end{align*}
$$

and that $(\mathrm{A}) \lim s_{n}=s$ exists. Then $n a_{n} \rightarrow 0$ and $\sum a_{n} \cos n t$ is uniformly convergent.

As in the proof of Theorem $8, s_{n} \geqq-p$, hence $\sum a_{n}$ is ($C, 1$) summable; then by Lemma 2, $\delta_{n} \rightarrow \delta, n a_{n} \rightarrow 0$. Next from (6.7)

$$
\begin{gather*}
\delta_{n+1}-\delta_{n} \geqq-q n^{-1} \delta_{n}, \quad \text { and } \\
D_{n}=\sum_{n}^{2 n}\left(\delta_{\nu+1}-\delta_{v}\right)=\delta_{3 n+1}-\delta_{n}=O(1) \tag{6.8}
\end{gather*}
$$

Write $D_{n}=D^{\prime}+D^{\prime \prime}$, where D^{\prime} denotes the sum of negative terms, $D^{\prime \prime}=D_{n}-D^{\prime}$. From (6.8), $0 \geqq D^{\prime} \geqq-q \sum_{n}^{2 n} \nu^{-1} \delta_{\nu}$, hence $D^{\prime}=O(1)$, and $D^{\prime \prime}=O(1)$; hence $\sum_{n}^{2 n}\left|\delta_{\nu+1}-\delta_{\nu}\right|=O(1)$. The remaining part is the same as in the proof of Theorem 8.
7. Closing remarks. The assumption of Lemma 1 can be written as $0 \leqq B_{n+1} \leqq(n+q) / n B_{n}$, or $0 \leqq(\Gamma(n+q) / \Gamma(n)) B_{n+1}$ $\leqq(\Gamma(n+q+1) / \Gamma(n+1)) B_{n}$, that is, $\Gamma(n) B_{n} / \Gamma(n+q)$ is decreasing. A similar lemma was proved by Hardy; for reference see [2]. Again in Lemma 2 the assumption is $B_{n+1} \geqq(n-q) / n B_{n} \geqq 0$, or

$$
(\Gamma(n-q) / \Gamma(n)) B_{n+1} \geqq(\Gamma(n-q+1) / \Gamma(n+1)) B_{n} \geqq 0
$$

that is, $\Gamma(n) B_{n} / \Gamma(n-q)$ is increasing. The larger q the more general is the condition.

The differences $(n+1) s_{n+1}-n s_{n}=\tau_{n+1}$ are the ($C,-1$) means of the series $\sum a_{n}$, that is, $s_{n}=n^{-1} \sum_{1}^{n} \tau_{\nu}\left(\tau_{1}=s_{1}\right)$. The condition (6.1) may be written as

$$
-\left(\tau_{n}+p\right) \leqq \tau_{n+1}-\tau_{n} \leqq(q / n)\left(\tau_{n}+p\right)
$$

If it holds for some p, then it clearly holds for any $p^{\prime}>p$. Similarly (6.7) becomes

$$
\tau_{n+1}-\tau_{n} \geqq-(q / n)\left(\tau_{n}+p\right) \geqq-\left(\tau_{n}+p\right),
$$

and here too p may be replaced by any $p^{\prime}>p$. Clearly summability ($C,-1$) of the series $\sum a_{n}$ is equivalent to convergence together with $n a_{n} \rightarrow 0$.

We have seen that the first inequality of (6.1) and Abel summability of $\sum a_{n}$ imply ($C, 2$) summability of the sequence $\left\{\tau_{n}\right\}$; it follows from a theorem of Tauberian type that $\sum a_{n}$ converges. It is an open question whether this and $\tau_{n} \geqq-p, n=1,2,3, \cdots$, imply uniform convergence of $\sum a_{n} \cos n t$ at $t=0$. Theorem IV asserts that this is the case if $\sum a_{n} \cos n t$ is the Fourier series of a function continuous at $t=0$. However it is doubtful whether even ($C,-1$) summability of $\sum a_{n}$ itself implies uniform convergence of $\sum a_{n} \cos n t$, or continuity of the corresponding function at $t=0$.

References

1. L. Fejér, Über Potenzreihen, deren Summe im abgeschlossenen Konvergenzkreise uiberall stetig ist, Sitzungsberichte der Kgl. Bayerischen Akademie der Wissenschaften, 1917, pp. 33-50.
2. O. Szász, On uniform convergence of Fourier series, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 587-595.
3. - On Abel and Lebesgue summability, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 885-893.
