5. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 19, 1934, New York, pp. 151 and 156.
6. E. T. Whittaker and G. N. Watson, A Course of modern analysis, Cambridge, 4th ed., 1927.

The Massachusetts Institute of Technology and Syracuse University

A GENESIS FOR CESÅRO METHODS

RALPH PALMER AGNEW

1. Introduction. The Cesàro methods C_{r}, introduced by Cesàro ${ }^{1}$ because of their applicability to Cauchy products of series, constitute the most publicized class of methods of summability.

The regular Nörlund methods ${ }^{2}$ of summability constitute one of the two most publicized general classes of consistent methods of summability. The regular Hurwitz-Silverman-Hausdorff methods constitute the other.

This note proves the following theorem.
Theorem. The Cesàro methods are the only methods of summability, regular or not, which are both Nörlund methods and Hurwitz-SilvermanHausdorff methods.

Thus if the Cesàro methods had not been previously introduced into mathematical literature, they could be defined and exploited as the unique class of methods of summability enjoying all of the properties of Nörlund methods and all of the properties of Hurwitz-Silver-man-Hausdorff methods.

In §4, it is shown that the only methods which are both Riesz methods and Hurwitz-Silverman-Hausdorff methods are methods Γ_{r} closely related to the methods C_{r}.
2. Nörlund methods. Each sequence p_{0}, p_{1}, \cdots of real or complex constants for which $P_{n} \equiv p_{0}+p_{1}+\cdots+p_{n} \neq 0$ for each n defines a Nörlund method of summability by means of which a sequence s_{0}, s_{1}, \cdots is summable to σ if $\sigma_{n} \rightarrow \sigma$ where

[^0]\[

$$
\begin{equation*}
\sigma_{n}=\left(p_{n} s_{0}+p_{n-1} s_{1}+\cdots+p_{1} s_{n-1}+p_{0} s_{n}\right) / P_{n} \tag{1}
\end{equation*}
$$

\]

The class of Nörlund transformations (1) is identical with the class of triangular matrix transformations

$$
\begin{equation*}
\sigma_{n}=\sum_{k=0}^{n} a_{n k} s_{k} \tag{2}
\end{equation*}
$$

for which

$$
\begin{align*}
a_{n n} \neq 0, & n=0,1,2, \cdots \tag{3}\\
\sum_{k=0}^{n} a_{n k}=1, & n=0,1,2, \cdots
\end{align*}
$$

and, for each $q=0,1,2, \cdots$, there is a constant b_{q} such that

$$
\begin{equation*}
a_{n, n-q}=b_{q} a_{n n}, \quad n \geqq q \tag{5}
\end{equation*}
$$

3. Hurwitz-Silverman-Hausdorff methods. These methods (hereafter the HSH methods) constitute the class of triangular matrix transformations which commute with the arithmetic mean transformation

$$
\begin{equation*}
\sigma_{n}=\left(s_{0}+s_{1}+\cdots+s_{n}\right) /(n+1) \tag{6}
\end{equation*}
$$

and hence also with each other.
As Hurwitz and Silverman ${ }^{3}$ and Hausdorff ${ }^{4}$ have shown, with each method HSH there is associated a generating sequence $\lambda_{0}, \lambda_{1}, \cdots$ such that the transformation takes the form

$$
\begin{equation*}
\sigma_{n}=\sum_{j=0}^{n}(-1)^{j} C_{n, i} \lambda_{j} \sum_{k=0}^{i}(-1)^{k} C_{j, k} s_{k} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{n}=\sum_{k=0}^{n}\left[C_{n, k} \sum_{j=0}^{n-k}(-1)^{i} C_{n-k, j} \lambda_{j+k}\right] s_{k} . \tag{8}
\end{equation*}
$$

Assume that (8) is a Nörlund transformation, and let the quantity in brackets in (8) be denoted by $a_{n k}$. Then, $a_{n n}=\lambda_{n}$ so, by (3) and (4), $\lambda_{n} \neq 0$ for each n and $\lambda_{0}=1$. Moreover

$$
\begin{equation*}
a_{n, n-1}=n\left(\lambda_{n-1}-\lambda_{n}\right) \tag{9}
\end{equation*}
$$

[^1]and hence (5) with $q=1$ guarantees existence of a constant (which we call r instead of q_{1}) such that
$$
n\left(\lambda_{n-1}-\lambda_{n}\right)=r \lambda_{n}, \quad n \geqq 1
$$

Here r cannot be a negative integer; otherwise one could set $n=-r$ in (10) and contradict $\lambda_{-r-1} \neq 0$. Therefore

$$
\begin{equation*}
\lambda_{n}=(n /(n+r)) \lambda_{n-1}, \quad n=1,2, \cdots \tag{11}
\end{equation*}
$$

Since $\lambda_{0}=1$, (11) implies that

$$
\begin{equation*}
\lambda_{1}=1 /(1+r), \quad \lambda_{2}=(2 /(2+r)) \lambda_{1}=1 \cdot 2 /(1+r)(2+r) \tag{12}
\end{equation*}
$$

and in general

$$
\begin{array}{r}
\lambda_{n}=1 \cdot 2 \cdot 3 \cdots n /(1+r)(2+r) \cdots(n+r)=n!r!/(n+r)! \tag{13}\\
n=0,1, \cdots
\end{array}
$$

where $r!$ is the factorial function, $\Gamma(r+1)$, defined for all complex r except $-1,-2,-3, \cdots$.

By use of the familiar identity

$$
\begin{equation*}
\sum_{k=0}^{n} C_{n-k+r-1, r-1}=C_{n+r, r}, \quad r \neq-1,-2, \cdots, \tag{14}
\end{equation*}
$$

we obtain the familiar fact that for each $r \neq-1,-2, \cdots$ the Cesàro transformation C_{r},

$$
\begin{equation*}
\sigma_{n}=\sum_{k=0}^{n}\left[C_{n-k+r-1, r-1} / C_{n+r, r}\right] s_{k} \tag{15}
\end{equation*}
$$

is the one and only Nörlund transformation for which $a_{n n}=\lambda_{n}$ $=n!r!/(n+r)!$. This completes the proof of the fact that the only HSH transformations which are Nörlund transformations are the Cesàro transformations.

It is only when $r=0$ or r is a complex number with a positive real part that C_{r} is regular and can be written in the Hausdorff form

$$
\begin{equation*}
\sigma_{n}=\int_{0}^{1} \sum_{k=0}^{n} C_{n, k} t^{t}(1-t)^{n-k} s_{k} d x(t) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
x(t)=1-(1-t)^{r} \tag{17}
\end{equation*}
$$

For each complex r not a negative integer, the more general HurwitzSilverman transformation (8) becomes C_{r} when $\lambda_{n}=n!r!/(n+r)!$.
4. Riesz methods. Each sequence p_{0}, p_{1}, \cdots for which $P_{n} \equiv p_{0}+p_{1}$ $+\cdots+p_{n} \neq 0$ for each n determines a Riesz transformation

$$
\begin{equation*}
\sigma_{n}=\left(p_{0} s_{0}+p_{1} s_{1}+\cdots+p_{n} s_{n}\right) / P_{n}, \quad n=0,1,2, \cdots . \tag{18}
\end{equation*}
$$

If one of the two transformations

$$
\begin{equation*}
\sigma_{n}^{\prime}=\sum_{k=0}^{n} a_{n k} s_{k}, \quad \sigma_{n}^{\prime \prime}=\sum_{k=0}^{n} a_{n, n-k} s_{k} \tag{19}
\end{equation*}
$$

is a Nörlund transformation, the other is a Riesz transformation. It can be shown, by a suitable modification of our treatment of HSH and Nörlund methods, that if A is both an HSH method and a Riesz method, then there is a constant r not a negative integer such that A has the form

$$
\begin{equation*}
\sigma_{n}=\sum_{k=0}^{n}\left[C_{k+r-1, r-1} / C_{n+r, r}\right] s_{k} . \tag{20}
\end{equation*}
$$

Thus the only methods which are simultaneously HSH methods and Riesz methods are the methods Γ_{r} defined by (20). For each $r \neq-1,-2, \cdots$, the transformation Γ_{r} is obtained from C_{r} by reversing the order in which the elements $a_{n t}^{(r)}$ are applied to s_{0}, s_{1}, \cdots. The HSH sequence λ_{n} generating Γ_{r} is $\lambda_{0}=a_{00}=1$ and

$$
\begin{equation*}
\lambda_{n}=a_{n n}=r /(n+r), \quad n>0 . \tag{21}
\end{equation*}
$$

The following discussion applies only to regular transformations. The elements $a_{n k}$ of the matrix of the Hausdorff transformation generated by $\chi(t)$ are given by

$$
\begin{equation*}
a_{n, k}=\int_{0}^{1} C_{n, k} t^{k}(1-t)^{n-k} d \chi(t) . \tag{22}
\end{equation*}
$$

If (22) holds, then

$$
\begin{aligned}
a_{n, n-k} & =\int_{0}^{1} C_{n, k^{n-k}(1-t)^{k} d \chi(t)} \\
& =-\int_{0}^{1} C_{n, k} u^{k}(1-u)^{n-k} d_{u} \chi(1-u)
\end{aligned}
$$

and hence

$$
\begin{equation*}
a_{n, n-k}=\int_{0}^{1} C_{n, k} t^{k}(1-t)^{n-k} d_{t}[1-\chi(1-t)] . \tag{23}
\end{equation*}
$$

It follows that if $\chi(t)$ generates one of the transformations in (19), then $\chi_{1}(t) \equiv 1-\chi(1-t)$ generates the other. Suppose now that $\chi(t)$
generates a regular Riesz method. Then $1-\chi(1-t)$ generates a Nörlund method, which must be a Cesàro method C_{r}. Hence $1-\chi(1-t)=1-(1-t)^{r}$ and $\chi(t)=t^{r}$. Since t^{r} generates a regular HSH method only when $R r>0$, and since t^{r} generates the regular Riesz method Γ_{r} when $R>0$, we have proved the following result. The methods Γ_{r} for which $R r>0$ are the only regular methods of summability which are simultaneously Riesz methods and HSH methods.

The identity

$$
\begin{equation*}
\frac{r!n!}{(n+r)!}=\frac{(r-1)!n!}{(n+r-1)!} \frac{r}{n+r}, \quad r \neq 0,-1, \cdots \tag{24}
\end{equation*}
$$

implies the identities $C_{r}=C_{r-1} \Gamma_{r}=\Gamma_{r} C_{r-1}$ and $\Gamma_{r}=C_{r} C_{r-1}^{-1}=C_{r-1}^{-1} C_{r}$ involving the methods Γ_{r} and C_{r}; this is a consequence of the fact (Hurwitz-Silverman, loc. cit. p. 7) that if λ_{n}^{\prime} generates A^{\prime} and $\lambda_{n}{ }^{\prime \prime}$ generates $A^{\prime \prime}$, then $\lambda_{n}^{\prime} \lambda_{n}^{\prime \prime}$ generates $A^{\prime} A^{\prime \prime}$. From the fact that C_{r} and the Hölder method H_{r} are equivalent $\left(C_{r} \sim H_{r}\right)$ when $R r>-1$ we obtain, when $R r>0$, the familiar formulas

$$
\begin{equation*}
C_{r} \sim H_{r}=H_{r-1} H_{1} \sim C_{r-1} H_{1}=C_{1} C_{r-1} \tag{25}
\end{equation*}
$$

and $C_{r} C_{r-1}^{-1} \sim C_{1}$. This gives the fact, proved by Hausdorff, loc. cit., that Γ_{r} is equivalent to C_{1} when $\mathbb{R}_{r}>0$.

Cornell University

[^0]: Presented to the Society, August 14, 1944; received by the editors June 19, 1944.
 ${ }^{1}$ E. Cesàro, Sur la multiplication des series, Bull. Sci. Math. (2) vol. 14 (1890) pp. 114-120.
 ${ }^{2}$ N. E. Nörlund, Sur une application des fonctions permutables, Lunds Universitets Arsskrift (2) vol. 16 (1919).

[^1]: ${ }^{3}$ W. A. Hurwitz and L. L. Silverman, On the consistency and equivalence of certain definitions of summability, Trans. Amer. Math. Soc. vol. 18 (1917) pp. 1-20.
 ${ }^{4}$ F. Hausdorff, Summationsmethoden und Momentfolgen. I and II, Math. Zeit. vol. 9 (1921) pp. 74-109 and 280-299.

