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1. Introduction. The Cesàro methods Cr, introduced by Cesàro1 be
cause of their applicability to Cauchy products of series, constitute 
the most publicized class of methods of summability. 

The regular Nörlund methods2 of summability constitute one of the 
two most publicized general classes of consistent methods of summa
bility. The regular Hurwitz-Silverman-Hausdorff methods constitute 
the other. 

This note proves the following theorem. 

THEOREM. The Cesàro methods are the only methods of summability, 
regular or not, which are both Nörlund methods and Hurwitz-Silverman-
Hausdorff methods. 

Thus if the Cesàro methods had not been previously introduced 
into mathematical literature, they could be defined and exploited as 
the unique class of methods of summability enjoying all of the prop
erties of Nörlund methods and all of the properties of Hurwitz-Silver
man-Hausdorff methods. 

In §4, it is shown that the only methods which are both Riesz 
methods and Hurwitz-Silverman-Hausdorff methods are methods Tr 

closely related to the methods Cr. 

2. Nörlund methods. Each sequence po, pu • • • of real or complex 
constants for which Pn^po"\-pi+ • • • +pn^0 for each n defines a 
Nörlund method of summability by means of which a sequence 
So, su • • • is summable to a if crn~><r where 
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(1) <Tn = ( ^ 0 + pn~\Sl + • * • + plSn-1 + P<)Sn)/Pn. 

The class of Nörlund transformations (1) is identical with the class of 
triangular matrix transformations 
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3. Hurwitz-Silverman-Hausdorff methods. These methods (here
after the HSH methods) constitute the class of triangular matrix 
transformations which commute with the arithmetic mean trans
formation 

(6) <rn = (5o + 5i + • • • + sn)/(n + 1) 

and hence also with each other. 
As Hurwitz and Silverman3 and Hausdorff4 have shown, with each 

method HSH there is associated a generating sequence Xo, Xi, • • • 
such that the transformation takes the form 

(7) *n « £ ( - ïycn.jkiiï ( - iycitksk 
7-0 A-0 

or 

(8) 
AT *£ï 1 
&Œ0 L i**o J 

Assume that (8) is a Nörlund transformation, and let the quantity 
in brackets in (8) be denoted by ank. Then, a n n=X n so, by (3) and (4), 
Xn5^0 for each n and Xo = l . Moreover 

(9) an,n~i = w(Xn_i — Xn) 

3 W. A. Hurwitz and L. L. Silverman, On the consistency and equivalence of certain 
definitions of summability, Trans. Amer. Math. Soc. vol. 18 (1917) pp. 1-20. 

4 F. Hausdorff, Summationsmethoden und Momentfolgen. I and II, Math. Zeit. 
vol. 9 (1921) pp. 74-109 and 280-299. 
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and hence (S) with 5 = 1 guarantees existence of a constant (which we 
call r instead of qi) such that 

(10) w(Xn-i — Xn) = rX„, n g£ 1. 

Here r cannot be a negative integer; otherwise one could set n = — r in 
(10) and contradict X-r-i^O. Therefore 

(11) Xw = (*/(» + r))X-i, n - 1, 2, • • • . 

Since Xo = 1, (11) implies that 

(12) Xi = 1/(1 + r), X, « (2/(2 + f))Xx - 1-2/(1 + r)(2 + r) 

and in general 

(13) Xn = 1-2-3 • • • n/(l + f)(2 + r) • • • (w + r) = nlr!/(» + r)!, 

» = 0, 1, • • • , 

where r\ is the factorial function, T(r+1), defined for all complex r 
except — 1, — 2, — 3, • • • . 

By use of the familiar identity 
n 

(14) 2Lt d - f c + r - l ^ r - l == Cn+r,r, T 7* — 1, — 2, * • • , 
fc=0 

we obtain the familiar fact that for each r5* — 1, — 2, • • • the Cesàro 
transformation Cr, 

n 

(15) <Tn = 2^, ICn-fc+r-l.r-l/Cn+y.rJ^A;, 
fc«=0 

is the one and only Nörlund transformation for which ann=Xn 

= n\r\/(n+r)\. This completes the proof of the fact that the only 
HSH transformations which are Nörlund transformations are the 
Cesàro transformations. 

It is only when r = 0 or r is a complex number with a positive real 
part that Cr is regular and can be written in the Hausdorff form 

(16) <rn = f ECn,***(l - t)«-kskdX(t) 
J 0 fc«o 

where 

(17) x(0 - 1 - (1 - ')r-

For each complex r not a negative integer, the more general Hurwitz-
Silverman transformation (8) becomes Cr whenXn = w!r!/(w+r)!. 
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4. Riesz methods. Each sequence po, pu • • • for which Pn^po+pi 
+ • • • +^n7^0 for each n determines a Riesz transformation 

(18) <Tn = (p0S0 + plSi + h pnSn)/Pn, » » 0, 1, 2, • • • . 

If one of the two transformations 

n n 

(19) <Tn = ]C« ö n^> ^l' = E fl»,ii-fcî)li 
fc«=0 fc«0 

is a Nörlund transformation, the other is a Riesz transformation. I t 
can be shown, by a suitable modification of our treatment of HSH 
and Nörlund methods, that if A is both an HSH method and a Riesz 
method, then there is a constant r not a negative integer such that A 
has the form 

n 
(20) <Tn = 2_, [Cfc+r-l,r-l/Cw+rtr]Sfc. 

Jfc«0 

Thus tóe 0wZ;y methods which are simultaneously HSH methods and Riesz 
methods are the methods Tr defined by (20). For each r ^ — 1 , —2, • • • , 
the transformation Tr is obtained from Cr by reversing the order in 
which the elements a%l are applied to So, $i, • • • . The HSH sequence 
Xn generating T r is Xo = aoo = 1 and 

(21) Xn = ann = r / (» + r), » > 0. 

The following discussion applies only to regular transformations. 
The elements an& of the matrix of the Hausdorff transformation gen
erated by x (0 are given by 

(22) an,k « f Cn,***(l - t)n~hdx(t). 
J o 

If (22) holds, then 

an,n-k = f Cn,***-*(1 - t)kdx(t) 
J o 

= - f Cw,*«*(l - W)W~^WX(1 - U) 
J o 

and hence 

(23) an^h = f C..*/*(l ~ *)^V«[l ~ x(l - *)]. 
•J o 

I t follows that if x (0 generates one of the transformations in (19), 
then x i ( 0 s l " " X ( l " " 0 generates the other. Suppose now that x (0 
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generates a regular Riesz method. Then 1— x ( l ~ 0 generates a 
Nörlund method, which must be a Cesàro method Cr. Hence 
1— x(l~~/) = 1 —(1— t)r and xCO—^ Since tr generates a regular 
HSH method only when cRr>Oi and since V generates the regular 
Riesz method Tr when 9^>0, we have proved the following result. The 
methods Trfor which %r > 0 are the only regular methods of summahility 
which are simultaneously Riesz methods and HSH methods. 

The identity 

r\n\ (r — \)\n\ r 
(24) = , r ^ O , - 1 , • • • , 

(n + r)l (» + r - 1)! n + r 
implies the identities Cr~Cr-.\Tr — TrCr-i and r r=»C rC^!1 = Cr"l

1
1Cr in

volving the methods T r and Cr; this is a consequence of the fact 
(Hurwitz-Silverman, loc. cit. p. 7) that if X» generates A1 and Xn' ' 
generates A", then Xn'Xn" generates A'A". From the fact that Cr 

and the Holder method Hr are equivalent (Cr~Hr) when î^r > — 1 we 
obtain, when cBj>Ot the familiar formulas 

(25) Cr ~ Hr = i^r-lHl ~ C-. i#i = CiCr_i 

and CrC^J^Ci. This gives the fact, proved by Hausdorff, loc. cit., 
tha t T r is equivalent to G when î ^ r > 0 . 
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