A DIFFERENTIAL INEQUALITY

R. P. BOAS, JR.

The following theorem was discovered by S. B. Jackson in connection with a problem in differential geometry.

THEOREM 1. If f(x) is of class C^2 in (0, a), f(0) = f'(0) = 0, and $f''(x) \le K |f'(x)| + L |f(x)|$ in (0, a), where K and L are constants, then $f(x) \le 0$ in some interval (0, b).

If f(x) is in addition analytic at 0, Theorem 1 becomes trivial, since if a_n is the first nonvanishing coefficient of the power series of f(x), $x^{2-n}f''(x)$ approaches a nonzero limit, while $x^{2-n}f'(x)$ and $x^{2-n}f(x)$ approach zero, as $x \to 0$, and consequently $a_n < 0$.

I shall prove the following more general theorem.

THEOREM 2. If f'(x) is absolutely continuous in (0, a), f(0) = f'(0) = 0, and

(1)
$$f''(x) \leq K(x) |f'(x)| + x^{-1}L(x) |f(x)|$$

almost everywhere in (0, a), where K(x) and L(x) are non-negative and integrable in (0, a), then either $f(x) \equiv 0$ in some interval (0, b), or f'(x) < 0 in $0 < x < \min(a, c)$, where c is such that

Since f(0) = 0, f(x) is negative in (0, c) when f'(x) < 0 in (0, c). Theorem 1 is contained in the special case K(t) = K, L(t) = Lt.

Theorem 2 is the best possible result of its kind; for, if $\int_0^x K(t)dt$ diverges and K(t) is positive and continuous in t>0, the function f(x) defined by $f'(x) = 1/\int_x^1 K(t)dt$, f'(0) = f(0) = 0, is positive in x>0 and satisfies (1) for all x such that $\int_x^1 K(t)dt > 1$.

Assume that f(x) is not identically zero in any interval (0, b), and write $M(x) = \max_{0 \le t \le x} |f'(t)|$, so that M(x) > 0 for x > 0 and M(x) is nondecreasing.

We observe that for $0 \le x \le a$,

$$|f(x)| = \left| \int_0^x f'(t)dt \right| \le xM(x).$$

There are points x_n such that $x_n \downarrow 0$ and $M(x_n) = |f'(x_n)|$. Suppose that $f'(x_n) > 0$ for some n. Let (a_n, b_n) be the largest interval, contain-

Received by the editors June 1, 1944.

96 R. P. BOAS

ing x_n , in which f'(x) > 0; since f'(x) is continuous, there is such an interval, and $f'(a_n) = 0$. Consequently we have, using (1) and (3),

$$0 < M(x_n) = f'(x_n) = \int_{a_n}^{x_n} f''(t)dt$$

$$\leq \int_{a_n}^{x_n} \left\{ K(t)f'(t) + t^{-1}L(t) \mid f(t) \mid \right\} dt$$

$$\leq M(x_n) \int_{0}^{x_n} \left\{ K(t) + L(t) \right\} dt.$$

This leads to a contradiction if $x_n < c$, where c is defined by (2). Hence we must have $f'(x_n) < 0$ for $x_n < c$.

There is a largest interval (a_n, b_n) , containing x_n , in which f'(x) < 0. Suppose first that $a_n > 0$ for every n; then the intervals (a_n, b_n) are separated by other intervals in which $f'(x) \ge 0$, and consequently $f'(b_n) = 0$, $b_n \rightarrow 0$. Then we have for $a_n < x < b_n$

$$0 < -f'(x) = \int_{x}^{b_{n}} f''(t)dt$$

$$\leq \int_{x}^{b_{n}} \left\{ -K(t)f'(t) + t^{-1}L(t) \mid f(t) \mid \right\} dt$$

$$\leq M(b_{n}) \int_{0}^{b_{n}} \left\{ K(t) + L(t) \right\} dt.$$

Since $f'(b_n) = 0$, there is a point x_n' in (x_n, b_n) such that $-f'(x_n') = M(b_n)$. Taking $x = x_n'$ in (4), we have

(5)
$$0 < M(b_n) \le M(b_n) \int_0^{b_n} \{K(t) + L(t)\} dt,$$

and again there is a contradiction when $b_n < c$.

Hence $a_n = 0$ for some n. If $b_n \ge a$, we have f'(x) < 0 in 0 < x < a; if $b_n < a$, we have $f'(b_n) = 0$, and then (4) and (5) hold. But (5) is contradictory unless $b_n \ge c$. Hence we have f'(x) < 0 in $0 < x < \min(a, c)$.

We have incidentally established the following result about a function and its first derivative.

THEOREM 3. If f(x) is absolutely continuous in (0, a), f(0) = 0, and $f'(x) \le K(x) |f(x)|$, where K(x) is non-negative and integrable in (0, a), then either $f(x) \equiv 0$ in some interval (0, b), or f(x) < 0 in $0 < x < \min(a, c)$, where $\int_a^x K(t) dt < 1$ if x < c.

HARVARD UNIVERSITY