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A CONTINUED FRACTION 

H. S. WALL 

1. Introduction. In view of the fact that the continued fraction 
frequently furnishes a method for summing a slowly convergent or 
even divergent power series, it is desirable to have a simple algorithem 
for obtaining the continued fraction. We present here such an al
gorithm based upon the fact that the process for constructing a se
quence of orthogonal polynomials can be so arranged that it gives 
simultaneously a continued fraction expansion for a power series. I t 
has been known at least since Tschebycheff that the problem of con
structing a sequence of orthogonal polynomials is related to the prob
lem of expanding a power series into a continued fraction. However, 
the fact that the two problems are actually identical does not seem 
to have been emphasized. 

2. The expansion of a power series into a /-fraction. A continued 
fraction of the form 

a0 ax a2 

(2.1) 
bi + z — b2+ z — b3 + z — - - -

is called a J-fraction. The ap and bp are constants, and z is a complex 
variable. We shall suppose that the ap are different from zero. We 
denote by Ap(z) and Bp(z) the pth numerator and denominator, re
spectively, of the J-fraction, so that Ap(z)/Bp(z) is its pth approxi-
mant. The usual recurrence formulas 

AQ = 0, A i = #o, Ap = (bp + z)AP~i •— ap-iAp„2, 

(2.2) /> = 2 ,3 ,4 , . . . , 

Bo s= 1, Bi = bi + z, Bp = (bp + z)Bp„i — ap„_\Bp^, 

show that Ap(z) is a polynomial of degree p — 1, and Bp(z) is a poly
nomial of degree p : 

AP(Z) = CXp.QZP-1 + <XPtlZ
P~2 + . « « + OJp.p-l, 

BP(z) = PP.VZP + PptizP~l + • • « + jSPlP. 

We note tha t 
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(2.4) 0P,O « 1, P9ti - h + b2 + • • • + bp. 

By means of (2.2) we readily obtain the determinant formula 

(2.5) Ap{z)Bp^{z) - Ap-i(z)Bp(z) » aQa! • • • <v_i, 

p - 1, 2, 3, • • • . 
Consequently we find, with the aid of (2.4), that 

Ar>+i(z) An(z) _ a0ai • • • an K 

Bn+l(z) ~ £»(*) ~ ^ ~ ^ ~ 

where 

(2.6) An « - a0ai • • • an(bl + b% + • • • + bn+x). 

It follows that there exists a power series 

(2.7) P(l/«) = coA + CxA2 + */«» + • • • 

such that the expansion in descending powers of z of An(z)/Bn(z) 
agrees term by term with P(l/z) for the first In terms (w = l, 2, 
3, • • • ). This uniquely determined power series is called the equiva
lent power series of the /-fraction. 

We shall now write down formulas connecting the various con
stants, ap,q, j3p,ff, cp, ap and bp. These formulas serve as an algorithm 
for expanding a given power series P(l/z) into a /-fraction, and, con
versely, for obtaining the equivalent power series of a given /-frac
tion. 

£oo = 1, Co0oo = #o> £i0oo =* ho = — aobi', 
lx » — ho/do, (&xo, pu) = (1, 6i), 

(C2, Ci) f J = a0ai, (c8, c2) f J - h « - aO0i(&i + &2); 

#2 = Ao/#o "- hi/aoaiy 

/ l , &2, 0 \ 
(020, 021, ^22) = (010, 01l) I I — öi(0, O, 0oo), 

\ 0 , 1, 02/ 

( 02O\ 

02i 1 = ÖO#I02, 

(2.8) 

S022' 

'02 

(c5, c4, c3) ( 02i | = h2 = — aoaia2(bi + b* + &3); ( 02O\ 

021 J 

Bo J 
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(030, 031, 032, 03s) =* (020, 0 ( 1, ÖZ, V, V \ 

0, 1, h, 0 J 
0, 0, 1, bzl 

ö2(0, O,01O, 0ii) , 

(2.9) (an,0, «n,l> * ' # • «n,n-l) = (0n,O, 0n,l» # * * » 0n.«-l) * 

n ** 1, 2, 3, • • • , (0n,o = 1). 

CO, Cly • • • , Cn_l 

0 , Co, • • • , Cn-2 

10, 0, • • • , Co 

By way of illustration, we shall obtain the third approximant 
of the /-fraction for the function P(l/z) =log (1 + 1/z). Here cp 

= ( - l ) V ( £ + l ) , £ « 0 , 1, 2, • • • . We then have: 

0oo = 1 , CQ = ao — 1; 

h - 1/2, (01O, 0n) - (1, 1/2), 

(1/3, - 1/2) ( M - 1/12 - ai, 
J/2> 

(- 1/4, ,/3) Q - - 1/15 = hi-, 

b, = 1/2, 08„, /321, /322) - (1, 1/2) Q' ^ M - (1/12)(1, 0, 1) 

= (1, 1, 1/6), 

(1/5, - 1/4, 1/3) 1 = 1/180 = a0ai<i2, a, = 1/15, 
Vl/6/ 

( - 1/6, 1/5, 1/4) 1 = - 1/120 = ht', 

\ l / 6 / 

J3 - 1/2, (1830, j8«, fa, /Sss) - (1, 3/2, 3/5, 1/20) ; 

(aso, «si, an) = (1, 1, 11/60). 
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Consequently, the third approximant of the /-fraction is 

Az{z) 1 1/12 1/15 

Bz(z) ~ 1/2 + z - 1/2 + z - 1/2 + 2 

22 + 2 + (11/60) 

" 28 + (3/2)2
2 + (3/5)2 + (1/20) ' 

We remark that for 2 = 1 this gives log 2 = .69312 • • • , which is 
exact to four decimal places. Only six coefficients of the power series 
were used in the computation. 

By the same method we find that the seventh approximant of the 
/-fraction expansion of the divergent power series 

Bi Bz B§ 

1-2-2 ~ 3-4-28 5-6-25 ~~ 

where J5i = 1/6, B3 = 1/30, J56 = 1/42, • • • are the Bernoulli numbers, 
is 

1/12 1/30 53/210 195/371 22999/22737 

2 + 2 + 2 + 2 + 2 

29944523/19733142 109535241009/48264275462 

+ z + s 
Stieltjes [3, p. 521]1 proved that this /-fraction converges for 
i?(2)>0 to the remainder J(z) in Stirling's formula log T(z) 
= (2-1/2) log 2~2 + (l/2) log (2ir)+/(*). He remarked that the 
law of formation of the coefficients in the /-fraction seems to be 
extremely complicated. 

3. Proof of the formulas (2.8) and (2.9). We shall first prove that 
the formulas (2.8) constitute an arrangement of the algorithm for 
constructing a sequence of polynomials Bn(z) *=zn+fin,iZ

n~1+ • • • 
+j3n,n which are orthogonal relative to a certain operator S. We 
define 5 to be the operator which replaces every zp by cp in any poly
nomial upon which it operates: 

S(fioZn + Viz»"1 + • • • + fin) = S(fioZn + fixz^ + . . . + /3W2°) 

= fioCn + filCn-1 + • • • + finCQ, 

where c0, ci, • • • , cVy • • • are given constants. Two polynomials Bp 

and Bq are said to be orthogonal if S(BpBq)=0 when the degrees p 
and q are unequal. We shall prove the following theorem: 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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THEOREM A. Let m be a positive integer, and put 

Co» Ci, • * * , Cp 

There exists a sequence of polynomials Bn(z)~zn+f3n,iZ
n-~1+ • • •+/3w,n, 

w = 0, 1, 2, • • • , m, such that 

= 0 if f 9e q, p S tn, q â m, 

5*0 if p = q < mt 

if and only if Ap9*0 for £ = 0, 1, 2, • • • , m — 1. ÜTAe polynomials are 
uniquely determined by the formulas 

(3.2) 5 .1 = 0, i50 = 1, Bp - (J , + *)£,_! - ap-i£P_2 , 

£ = 1, 2, 3, • • • , m, 

S(zpBp) = #001 • • • öp 9* 0, 

(3.3) S ^ B , ) = - <wi • • • 0p(ii + 62 + • • • + 6p+i), 

£ = 0, 1, 2, • • • , m - 1. 

PROOF. We suppose first tha t A p ^ 0 for £ = 0, 1, • • • , m — 1 , and 
shall prove tha t the required polynomials exist uniquely, and are 
given recurrently by (3.2) and (3.3). Since 5 0 = 1, we have: S(B%) 
= S( l ) = £(2°)=Co=Ao^O. LetBi^fa+z. Then, S(JBi)=&ic0+ci = 0if 
and only if 

S(Bo) = a0, S(zB0) = - a0h. 

Using induction, suppose that B0, JBI, • • • , Bny n<my have been 
uniquely determined such that (3.1) holds for p^n, q^*n, (3.2) holds 
for pSn, and (3.3) holds for p^n — 1. Now, an arbitrary polynomial 
of degree n + l in which the coefficient of zn+1 is unity can be expressed 
uniquely in the form Bw+i= (z+bn+i)Bn—anBn-i+koB0+kiBi+ • • • 
+&n-2-Bn-2, where &n+i, aw, k0, ki, • • • , &n_2 are suitable constants. 
The conditions 5(3 p 5 w + i )=0 , £ = 0, 1, • • • , n — 2, give in succession: 
feo^o — O, &iao#i = 0, • • • , fen-2^o^i • • • ^n-2 — 0, so that , .since aP7*Q 
for £ = 0 , 1 , • • • , w — 2, we must have k0 = ki~ • • • =&n-2 = 0. From 
the conditions S^^Bn+i) = 0 and 5(snjBw+i) = 0 , we then find that 
5 ( s n B n )=a 0 a i • • • an and S(zn+1Bn) = —a<>ai • • • aw(&i+&2+ • • • 
+&n+i). Then, from the system of equations: 5(spJBw)=0, p~0, 
1, • • • , w — 1, 5(snJ5n) =aoai * ' • an> we find at once that 

(3.1) S(£pBa)-
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(3.4) An = 0o0! • • • 0nAw-_t, 

and, inasmuch as n<my we see that an5^0. Consequently, JBW+I is 
uniquely determined, and (3.2), (3.3) hold for p = n + l and p=nf 

respectively. Also, S(BpBq)=0 for p?*q, p^n + l> q^n + 1. More
over, if n + Ktn, then S(B^+i) =S(zn+1B n+i)^0, for otherwise we 
would have An+i = 0. We have proved that the condition A ^ O , 
£ = 0 ,1 , • • •, m — 1, is sufficient for the polynomials to exist (uniquely) 
and satisfy the stated conditions. 

Conversely, the condition is necessary. For, it is obviously neces
sary that Ao = c05^0; and if S(s*B»)=0, for p = 0, 1, 2, • • • , n — 1 , 
S(znBn)=

zgn9£0y n<m, then the relation Aw = gnAw_i must hold, and 
hence Ap5^0, £ = 0, 1, 2, • • • , w — 1 . 

One will now readily see that the polynomials Bp given by (3.2) 
and (3.3) are the same as those given by (2.8). 

THEOREM B. Let A p ^ 0 , p = 0> 1, 2, • • • , and define polynomials 
An(z)=an,oZn~1+an,1z

n-2+ • • • +an>n-1 by means of (2.9). Then, 

An(z) 00 fli 0*-i 
(3.5) = ; » = 1 , 2, 3, • • • , 

£»(*) *i + 2 — &2 + z — • • - — Jn + z 
awd we have the formal power series identity 

0o#i • • * an hn 

(3.6) P(l/z)Bn(z) - A J?) = + — _ + . . . , 

where hn=—a(/ii • • • an(bi+b2+ • • • +6M+i) awdP(l/*0=]C(£p/2p + 1). 

PROOF. Let us define polynomials An(z) by means of the formulas 
A-.i=—ljAo — OyAp~(bp+z)Ap-i — ap-iAp-2,p=::l,2,3, • • - . F r o m 
these recurrence formulas and (3.2) it follows that (3.5) holds. Fur
thermore, we may conclude from the determinant formula (2.5) that 
there exists a power series P*(l/z)~y%2(cp*/zp+1) such that 

0O#1 * • * #n hn 

P*(l/z)BK(Z) - AM = + — - + . . . . 

On equating coefficients of corresponding powers of z on either side 
of this identity we find that precisely the relations (3.3) hold but 
with cp replaced by cp*. Inasmuch as those relations determine the 
cp uniquely in terms of the ap and bp, we conclude that cp* — cp, 
p = 0, 1, 2, • • • , or P * ( l / s ) = P ( l / s ) , so that (3.6) holds. The 
relation (2.9) may now be obtained by equating the coefficients of 
2°, z1, • • • , zn~l on either side of the identity (3.6). 
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This completes the proof of the formulas (2.8) and (2.9) connecting 
the constants ap,q, f3p,q, cp, ap, bp of a /-fraction and its equivalent 
power series. 

4. The expansion of a power series into an S-fraction. If we replace 
z by \/z in the power series (2.7) and in its /-fraction expansion 
(2.1), the series becomes 

(4.1) P(z) = CQZ + dz2 + c2z
% + • • • , 

and the /-fraction becomes 

ÜQZ ÜIZ2 a2z
2 

(4.2) 
1 + hz - 1 + b2z - 1 + 

An important special case arises when all the bp are equal to zero. 
For, in this case it is evident tha t P(z)/z contains only even powers 
of z. If we change the notation and replace c2n by cn, we see that the 
power series 

(4.3) coz + Qz2 + cxz* + Oz4 + c2z
5 + • • • 

has the expansion 

(4.4) 
1 — 1 — 1 — • - -

Let us now remove a factor z from both (4.3) and (4.4), and subse
quently replace z2 by z. Afterwards, we again multiply both the series 
and continued fraction by z and then replace z by 1/z. The series then 
becomes 

Co C\ C2 

(4.5) _ + + + . . . , 
Z Zz 2 3 

and the continued fraction becomes 

a0 ai a2 az a4 

(4.6) — — — — — 
Z — 1 — Z — 1 — 2 ~ • • • 

Conversely, if the power series (4.5) has a continued fraction expan
sion of the form (4.6), then the power series (4.3) has a continued 
fraction expansion of the form (4.2) in which the bp are all equal 
to zero. We shall call (4.6) an S-fraction since it is the form of con
tinued fraction preferred by Stieltjes. 

From the preceding it follows that the condition for (4.5) to have 
an S-fraction expansion (4.6) in which ap5^0, £ = 0, 1, 2, • • • , is the 
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same as the condition for (4.3) to have an expansion (4.2). This con
dition is that the determinants 

co, 0, d, 0 

0, ci, 0, c2 

c\, 0, c2, 0 

0, cu 0, c2 

be different from zero. From this we readily conclude the well known 
result that the power series (4.5) has an 5-fraction expansion if and 

Co, 
Co, 0 

0, d 
i 

Co, 0, 

o, cl9 

d, 0, 

C\ 

0 

c2 

t 

ly if the determinants 

Ap = 

Co, C\, , Cp 

Cl, C2, ' • ' i Cp+i 

Cp, Cp+i, , C2p 

tip = 

Cl, C2, ' • 

c2, c$, • • 

Cp+1, Cp+2, • • 

(p 

* > Cp+1 

• > Cp+2 

• , c2p+i 1 

= 0, 1, 2, ) 

are all different from zero. 
It is immediately evident that the algorithm of §2 can be used to 

compute the coefficients in (4.6) if we there replace c2n by cn and 
c2n+i by 0. 

5. A theorem of Stieltjes. A remarkable formulation of the problem 
of expanding a power series into a continued fraction was given by 
Stieltjes [3, p. 184]. Rogers [2] rediscovered part of the result of 
Stieltjes in a slightly different form. We offer the following formula
tion of the theorem. 

The problem of expanding the power series 

1 

z 

into a continued fraction 

1 

C\ C2 C% 

z2 zz z4 

0 1 a2 

J i + z — b2+ z — b$+ z — • * -

is equivalent to the problem of securing a power series identity of the 
form 

Q(x + y) = Q(x)Q(y) + a&^Q^y) + axa2Q2{x)Q2{y) + 
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where (ipT^O, p=*l, 2, 3, • • • , 

105 

Kn+1 Kn+t 

»! (w + 1)! 
i *"n,n-f2 

(»+2)I + 
awrf 

Go(«) - Q(z) « 1 + ci— + C*J{ + ^ + 

The formulas connecting the various constants are: 

fl*o,o =» 1, 0 for p > q; 

(iTo.fl» ITl.fl» ÎT2,«, * * ' ) 

=» (lTo,g-l, TTi.^-l, 7T2 l f l-i, • • • ) 

ffti, 1, 0, 0, 

ax, J2, 1, 0, 

0, a2, b9, 1, 

£ - 2, 3, 4, J l = fl"0,l> #p = flV-l,j> ~" flV-2,p~li 

CP+« = *"0,p7T0,<z + 0lfl*l,p7Ti,a + aia27T2(p7T2fg + • • • . 

This combines the idea of Rogers with a formulation of Stieltjes' 
algorithm particularly adapted to the /-fraction. A part of this is 
given in [l, pp. 328-329]. We omit the proof. 

Both Stieltjes and Rogers gave the example: 

ƒ' sech*w er*udu 
1 Vk 2(k + 1) 3(k + 2) 

z + z + o z - r z - r z + z -f. * • • 

This can be obtained almost by inspection from the identity 

sech* {% + y) » (cosh x cosh y + sinh x sinh y)~h. 
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