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Introduction. In this paper we shall show that, with the applica
tion of certain parts of the theory of functions, it is possible to derive 
some congruences connected with the solution of a certain diophan-
tine equation. The use of analysis to derive certain arithmetical facts 
is not new, a typical such paper is that of Rademacher,1 on the deriva
tion of the Dedekind reciprocal formula. The methods of analysis 
have been used repeatedly in analytic number theory. Rademacher 
in an invitation address said:2 " I t would, however, be a misplacement 
of emphasis if we were to look upon analysis, which here means func
tion theory, only as a tool applied to investigation of number theory. 
I t is more the inner harmony of a system which we wish to de
pict, • • • ." Here, by analysis, we shall derive general congruences 
from which the previously known congruences will appear as special 
cases. Heretofore these special congruences have been developed not 
as a single entity, but by a gradual sharpening of the methods used, 
which were primarily algebraic in character. 

1. Historical résumé. The solution of the diophantine equation 

(1.1) xp + yp + zp = 0, p = odd prime, 

in terms of the integers x, y, z prime to p, is connected with the con
gruences 

(1.2) Bnfp^n{t) = 0 (mod p), f^i{t) m 0 (mod p), 

where — t may be any of the quantities 

x/y> y/x, x/z> z/x, y/z, z/y (mod p), 

and where 

Mt) - E t - V (r > 1, n = 1, 2, . . . , (p - 3)/2), 

and JBI = 1 / 6 , 52 = 1/30, B$ = 1/42, and so on, are the Bernoulli num-

Presented to the Society, April 17, 1942; received by the editors April 21, 1944. 
1 Über a Reziprozittiïs formel aus der Theorie der Modulfunktionen, Matematikai 

es Physikai Lapok vol. 40 (1933) pp. 24-31 (in German), Zusammenfassung, pp. 32-34 
(Hungarian). 

2 Fourier expansions of modular forms and problems of partition, Bull. Amer. Math. 
Soc. vol. 46 (1940) pp. 59-73. 
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bers. The congruences involving the B's are generally referred to as 
the Kummer criteria for the solution of (l.l).8 

Vandiver4 in studying the equation (1.1) has obtained certain gen
eralizations of (1.2). For this purpose he introduced the polynomial 

(i.3) 2 (**+o"-1* - *iM)(*), 

wherep, n, k~l, 2, • • -;Z = 1,2, • • • ,k — l ;# is arbitrary. Then, Van-
diver has shown that, if (1.1) is satisfied by integers x, y, z, prime to p, 

(1.4) £ h^l\t)h^~l\t) m 0 (mod p), 

w = l, 2, • • • , £ — 1; k being any positive integer and — t the ratio of 
any pair of #, y, z modulus p. Relation (1.4) will be referred to as the 
general congruences of Vandiver. For k = 1, (1.4) reduces to the form 

(1.5) Mt)fp-n(t) a 0 (mod p). 

The relation (1.5) will be referred to as the Mirimanoff congruences.6 

For k = 2, after using (1.5) we have 

(1.6) h?'l\t)hi£\t) m 0 (mod p). 

This latter relation will be referred to as the special congruences of 
Vandiver.6 

2. Analytic approach. The foundation of the analytic approach to 
our problem is based upon the use of a function studied by Maier7 

and the addition-theorems obtained by Maier for this function. The 
function, denoted by ƒ(#, w),8 was defined by the series 

3 See Kummer's memoir, Abhandlungen der Akademie der Wissenschaften zu 
Berlin (1857) pp. 41-77. See also the papers of Vandiver under the title On Kummer1 s 
memoir of 1857 concerning Fermafs Last Theorem, Proc. Nat. Acad. Sci. U.S.A. vol. 6 
(1920) pp. 266-268; and Bull. Amer. Math. Soc. vol. 28 (1922) pp. 400-407. For a brief 
history of this problem, read Mordell, Fermafs Last Theorem, Cambridge Press, 1921. 

4 Transformations of the Kummer criteria in connection with Fermafs Last Theorem, 
Ann. of Math. vol. 27 (1926) pp. 171-176. 

6 VEquation indéterminée xl~\-yl-\-zl=0 et le criterium de Kummer, J. Reine 
Angew. Math. vol. 128 (1905) pp. 45-68. 

6 Note on some results concerning Fermafs Last Theorem, Bull. Amer. Math. Soc. 
vol. 28 (1922) pp. 258-260. 

7 Zur Theorie der elliptischen Funktionen, Math. Ann. vol. 104 (1931) pp. 745-769. 
8 The choice of the function ƒ (#, u), which can be thought of as a generating func

tion for the Bernoulli polynomials, or a function related to it, appears reasonable 
when we recall the intimate connection between the Bernoulli numbers and many 
of the congruences connected with the attempted solutions of Fermat's Last Theorem. 
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+00 A2irixk 

(2.1) ƒ (* ,« ) - E 
ft«~oo U+ k 

for 0 < # < 1 , and w^O (mod 1). Further, it has been shown, by con
sidering a special contour integral,9 that 

g— 2vixu 
(2.2) ƒ(* , «) » 2W — - , 

1 — e~2iriw 

w^O (mod 1). In this form the function/(re, u) is defined for all values 
of x. One of the addition-laws obtained by Maier for ƒ(#, u) is: 

(2 3} ^Xi W ^ ' ^ ^ ^ * + ^ * ~ ^ ^ 
- ƒ(* , w + »)ƒ(* ~ £, - t>), 

0 < £ < # < l ; w , tf, (w+^)^0 (modi). 
It was necessary, for this work, to introduce a new function, de

noted by fp(x, u), and defined as 

(2.4) ƒ„(*, u) = ƒ(* +p,u)- ƒ(*, *), f s 0 (mod 1). 

Now, on using (2.2), we obtain the following relations for the func
t ions /^ , u) and fp(xf u), which will prove useful for our immediate 
purpose. 

(2.5) ƒ (a, u) + / ( l - x, - u) = 0. 

ƒ*>(*, ̂ ) 
(2.6) ƒ ( * , « ) " 

g—2iripu 1 

p - 1 

(2.7) ƒ,(*, u) « - 2wiJ^ e-2*^»». 
fc-0 

(2.8) ƒ,(*, u) + /_,(1 - * , - » ) - 0. 

(2.9) / p (* + # , « ) « e~M*ufp(x, u). 

(2.10) ƒ_,(*, «) = - ƒ,(* - J, u) = - eM*»fp(x, u). 

Next, from the definition (2.4) and the above relations, we derive 
an addition-theorem for the function fp(x, u), which for our needs 
takes the form : 

«Namely, the integral In-fcn(e*Wrt/amirz)-(dz/(z+u)), where 0 < M < 1 » 
uf^O (mod 1) and where Cn is a rectangle with sides x» ±(2w+l/2) and y « ±m> 
where w is an arbitrarily large positive number and n an arbitrarily large positive 
integer so chosen that z~ —u lies in the interior of the rectangle Cn. Finally it is shown 
that limm,n-*.<«irn =0. 
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fP(x + p, u + a)f9{& + p,v + P)~ ƒ,(*, u + «)ƒ,({, v + jS) 

= /ptt + £>*< + v + a + fif9(x - £ - f f « + a) 
(2.11) - ƒ,(*, u + v + a + &)fp(x - £, u + a) 

+ fp(* + p,u + v + a + p)fp(x - { , - * - 0) 

- ƒ*>(*, « + » + « + #ƒ,(* - $ - *, - ^ ~ « , 

where u+a, v+fïf u+v+a+^^0 (mod 1) and £ = 0 (mod 1). 
Next, in the analytical development, we consider some special con

tour integrals involving the function fp(x, u). In order to illustrate 
our procedure, let us consider some sample integrals. First, 

ƒ' du 

c uh 

du 
— fp(x, u + a). 

Using (2.7) and the calculus of residues, this integral becomes 

—ƒ,(*, u + a) = / \ £ r w w « « ( * + h)k~\ 
c uk (k - 1)! *_o 

where & = 1, 2, • • • , p — 1; £ = 0 (mod 1); (u+a)^0 (mod 1), the 
path of integration C being a simple closed curve about the origin. 
Similarly, we obtain the expansion 

L dv 
— fp(t+P,u + v + a + P) 

c v9 

C - l)*(27Ti)*+1 Ç* 
(2.13) - / \ ; • £ ft + r + * ) - * 

(5 - 1) ! r«0 

where 5 = 1, 2, • • • , p — 1; £==0 (mod 1); u+a, tf+j3, u+v+a+fi^O 
(mod 1), the path of integration being similar to that used in (2.12). 
Finally we obtain 

ƒƒ 
du dv 
— —fp(* -t:~P,u + «)ƒ,({ + p, u + v + a + 0) 

CJc'UK V' 

du C dv 

(2.14) 
/

• du r dv 

—fp(*-t-p,* + *) I —fp(t + P,u + v + a + ff) 
c uk J c v8 

r«=0 V 
ft + r + )̂«-i(*-**tf)*+H-p 

( s - 1 ) ! (* - 1)! ZS 
P-I } 

x £ ( * + ' + hy-Ke-2*™)3*1*11}, 
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where k, s<p; k, s, £s=0 (mod 1); («+<*), (*>+|8)> (u+v+a+^)^0 
(mod 1). 

The method applied to the special contour integrals gives a device 
for expressing these and similar integrals as finite sums of terms in
volving all of the variables and parameters x} £, p, ay and /3. The in
tegral (like (2.14)) of both members of the equation (2.1) can be writ
ten in the form : 

p—i p—i 

Z (* + P + h)"-1((ri*ia)*+v+h- £ (€ + P + ry-iie-^l+v+r 

- Z (* + *)*-i(^,*te)*+*- Ê ft + r)-1(^'*)H'r 

fc-0 r«0 

( { + ^ r ) « - l ( r 2 ^ ) { + P + r 

(2.15) 
r«0 V 

ft + r)*-l(r-u*)**-r 

p - i 

Z (* + ' + A)*-̂ *-1"*)**-** 
ft-0 

P-I ( 

fc-0 I 

p-1 ( 

Z ft + P + h - f)-i(er»'V)H,H"*r"r}' 

p - 1 \ 

• E ft + P + h - r)-i(^*»)«+p+^> . 

In order to write this equation, (2.15), in a more symmetric form 
we shall put \ = r+h in the first two terms on the right side of (2.15), 
while in the last two terms on the right-hand side we shall put 
fjL = h — r. Next, we shall interchange the summation indices h and r 
in the first two terms on the right-hand side, and in the last two terms 
on the right we replace ix by X, thus obtaining the expression : 
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Ë (* + p + A)*-l(«-«'««)rt-H-* £ (£ + f + r).-l(e-2«?)£+P+r 
A—0 r«*0 

- Z (* + Â)*-1^ -2"")^* Z tt + r)«-1(e_2,rW)£+r 

(2.16) 

888 Z {ft + # + A)r-1(«r2r0)€+p+*(-f + fc)-1^1**)**"*} 
A _ O L 

p-i+fc -i 

• X) (* + x)^ i(*" ,r'a)aH"x 

X«fc J 
p - i r 

+ Z {(* + £ + Â)fc~1(o~2,ria)x+p+ft"~(^+ fc)*-1^**1*)*1*} 
A-»oL 

p-l+fc -1 

• Z ft + # + X)t-1(*~,**)H'*+X 

X=fc J 
From the equation (2.16) we shall obtain congruences connected with 
the solution of the diophantine equation (1.1). 

3. Vandiver polynomial. A generalized polynomial. In the previous 
section we developed a rather complicated equality involving finite 
sums. We shall now connect our work with some of the attempts that 
have been made to solve or extend the known range of validity of 
"Fermat's Last Theorem." Vandiver, in order to obtain a transforma
tion of the Kummer criteria (1.2), introduced a polynomial, (1.3). 
These polynomials, (1.3), shall be referred to as the Vandiver poly
nomials. Then, following the successful lead of Vandiver, we shall 
introduce the polynomial 

(3.1) E (* + s ) » ^ + * = * » ( - r; z, t), 

for p, n, r = 0 (mod 1); r <p; and any / and z. We shall refer to these 
as the generalized polynomials of Vandiver or for brevity as the gen
eralized polynomials. 

These new polynomials (3.1) are related to the polynomials of 
Vandiver (1.3) in the following manner: 

K(0; c/d, t) = 2 (* + c/iT1**"* 
(3.2) (n-Dc/d^;1 N » - V 

s«*0 

- ( n - 1 ) c/d (d,c) 
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where p, n, c> d = 0 (mod 1); c<d; and t arbitrary. 
Before making use of the generalized polynomials we shall list some 

of the special forms: 

(3.3) hn(0 ; 0, /) « £ s*~\ * = fn(t), 

(3.4) A.(0; 1/2, t) = 2~l"~Wl\f), 

(3.5) *.(0; (d - *)/<*, 0 = <r<*-1Y*-°/V",~*)(0. 
where p, n, c, dzzQ (mod 1); c<d; w<£; £ arbitrary. The function 
/n(/), in (3.3), was used by Mirimanoff in his transformation (1.5) of 
the Kummer criteria. The function h%,1}(t) in (3.4) was used by Van-
diver in obtaining a transformation of the Kummer criteria, namely 
(1.6). Finally the functions h^a"c){t) from (3.5) and hfr9)(t) from 
(3.2) were used by Vandiver in his general transformation, (1.4), of 
the Kummer criteria. 

Next, let us consider the sum 
h—p+l h+p—1 

Ê ft + P+ X)»-M+^ = £ ( £ + * + l)n~lrM-,H 
( 3 . 6 ) \^h v~h 

= *»(*;* + l , r ) . 

We shall develop, in the following, other properties of the generalized 
polynomials (2.12). 

The equation (2.16), which we obtained as an expansion of certain 
contour integrals similar to (2.14), on replacing e~~2Tia by t and e~2Ti& 
by r, can be written in terms of the generalized Vandiver polynomials, 
hn( — r; zt t). This equation, (2.16), after applying (3.6), can be writ
ten as 

*»(0; x + p , t)h8(0; £ + p , r) - **(0; %, f)h8(0; £, r) 

„ „, = E [**(*; *,t) {tt + p + * ) -M+*-* - « + A)*-M+*} ] 

+ Ë [*.(*; « + 1, r) {(* + * + A)*-1*-**"* 
*~° - (x+h)*~H>+h}]. 

This equation will be used to obtain a variety of congruences con
nected with the solution of equation (1.1). 

4. Some special congruences. In this section we shall derive some 
special congruences which are necessary for the final derivation of our 
general congruences. 
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The definition of the generalized polynomials gives us 

A»(0; ap, Ö V n ( 0 ; bp, t) 

Z (* + op)"-1*****) ( £ (s + bp)*-*-H*h*\ 

s t(«+b)p( J2 hn~lA ( ]T) s*-*-H9 J (mod p) 

= /(•+»>^(0 ; 0, 0*p-»(0; 0, /) 

- tWfnWf^it). 
Hence we obtain the following variation of the Mirimanoff congru
ences (1.5), namely10 

(4.1) r^+b^hn(0; ap, t)hp-n(0; bp, t) e 0 (mod p), 

where a, 6 = 0, ± 1 , ± 2 , • • • . A particularly simple congruence oc
curs when a = —6, namely 

(4.2) ft»(0; ap, t)hp„n(0; - ap,t) a 0 (mod p). 

If we put a = 6 = 0 in (4.1) this reduces to the original Mirimanoff 
congruences (1.5). 

Let us next consider the product hn(0; 1/2, f)hp-.n(0; 1/2, /) which 
reduces to /2~(p~2)/42,1)(0^?-n(0- Thus from the special congruences 
of Vandiver, (1.6), we have 

(4.3) tri2*>-2hn(0; 1/2, t)hp„n(0; 1/2, *) B 0 (mod p). 

In the same manner we obtain the congruences 

(4.4) 2*-2r1-<«+»>pAn(0; 1/2+ ap, t)hp„n(0; 1/2 + bp, t) s 0 (mod p), 

where a, 6 = 0, ± 1 , ± 2 , • • • . 
Following much the same procedure as before we shall derive some 

transformations of the general congruences of Vandiver, (1.4). For 
this purpose let us consider first 

f ) hn(0; c/d, / ) V n ( 0 ; (d - c)/d, t), 

10 In all the congruences given in this paper the following statements are under
stood. If the equation #*+yp+*PsBB0, £«odd prime, is satisfied by integers x, y, z 
prime to p, where —t may be any of the quantities x/y, y/x, x/z, z/x, y/z, z/y (mod p), 
then the congruences are satisfied. 
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where p, n, c, d^O (mod 1) ; c<d. This sum can be written in the form 

Ë [Y Ê (* + c/d)n-Hh+cA ( £ (s + (d - c)/d)p-n~H*+u-°»dX\ 
c<=ûL\ h~0 / \ ««=0 / J 

= tdr^v Ë | ( £ (hd + c)n-Hh) (^(sd + d- cy~n~ H* J1 
c=0 L \ fc«0 / \ «~0 / J 

c=0 

Hence the general congruences of Vandiver, (1.4), are replaced by the 
relation 

(4.5) J<^ 2 >r 1 S hn(0; c/d, 0Vn(O; (d - c)/d, t) m 0 (mod p). 

Next, if we consider the sum 

X) *»(0; c/i + ap, i)hp„n(0; (d - c)/d + bp, t) 

we obtain another transformation of (1.4), namely 

d ( H ) r i - W ) p ] [ ; ^ (0 ; c/d + ap, /)Vn(0; (rf - c)/d + bp, t) 
(4.6) c«o 

= 0(mod/>), 
where £, w, c, rfsO (mod 1); £<d; and a, 6 = 0, ±1, ±2, • • • . 

5. Some general congruences. In §3 we derived an addition-theo
rem (3.7) for the generalized polynomials of Vandiver, (3.1). Since 
(3.7) is an identity in x, £, t, r, k, and 5 we can substitute particular 
values for the variables and parameters without destroying the equal
ity. Among a variety of possible substitutions we shall introduce the 
following: 

(A) x = £ - 0, 

(B) x = nip, £ = qp, 

(C) x = 1/2 + mp, { = 1/2 + qp, 

(D) a: = c/d + w£, £ = (d - c)/d + ?ƒ>, 

and in each case we put 

r = t, k = n, s = p — n, 

where p, n, c, rfsO (mod 1); c<d; and m, 5 = 0, ± 1 , ±2, • • • . 
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Now, on applying, successively, these substitutions to the equation 
(3.7) we shall obtain several different quadratic functional equations 
for hn( —r;x, t). 

The congruences resulting from applying (A) to the equation (3.7) 
and by using a proper choice of a and b in (4.1) give us a direct 
transformation of the Mirimanoff congruences, (1.5). 

On applying (B) to (3.7) and using (4.1) we obtain the congruence 

p - i 

S [hn(h; mp, t){((q + \)p + h)p-n-H-(m+i)P+h 

+ £ [hP-n(h; qp + 1, t) {((m + l)p + h)n-H-(a+i)P+k 
hm=° - (mp + *)*-if-<*w»+*} ] 

+ r<™+*+2>^n(0; tnp, / ) V n ( 0 ; qp, f) ~ 0 (mod p). 

If we put m = q = 0 in (5.1) we obtain the same congruence which re
sulted from applying (A) to (3.7). 

Next on applying (C) and (D) respectively to (3.7) and using ap
propriate forms of (4.4), (4.5) and (4.6) we obtain the following con
gruences 

2 p - 2 E [*»(*5 1/2 + mp, *){(l/2 + (q + l)p + h)^^ 
A B = ° f-l/2-(m+l)p+h _ ( J / 2 + qp + &)P-w-lf-l/2-(m+2)p+U j 

p - 1 

+ 2 p - 2 E [**-»(*; 3/2 + qp, / ){( l /2 + (m + l)p + h)^ 

rii2-(q+i)p+h _ ( ! / 2 + mp+ ti)n~1rll2-(q+2')p+h} ] 

+ 2*~2r1~<"+*+2>^(0; 1/2 + ml , l ) V n ( 0 ; 1/2 + qp, t) 

s 0 (mod p), 

<2p~2Z E [*»(*; e/d + mp, t) {((d - e)/d + (q + l)p + h)^-1 

.t-cid-(m+Dp+h __ ^ _ c ) / ^ + ^ + &)p-"~irc/d- (w+2)p+fc}] 

d - 1 p ~ l 

,e „ + ^ 2 ZZ[V»(A;(2rf-c)/rf+^,0{(^+(^+i)/»+^)"-1 

( 5 . 3 ) c-0 h=Q 

.r.(d-c)/d-(f l+l)p+* — ( C / J -f W £ -f J)n-l^-C*-«)/*-C«+2)H-fcJ ] 

d - 1 
+ <^2ri-(m+a+2)pN£ J ^ Q . ^ + mp9 fy 

• fep_n(0; (d - c)/<* + ç#, *) » 0 (mod £), 

(5.2) 
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where p, n, ds=0 (mod 1); n<p; c = 0, 1, 2, • • • , d — 1; and m, g = 0, 
±1, ±2, • • . . 

Thus we have obtained transformations of the Mirimanoff and 
Vandiver congruences connected with the solution of equation (1.1). 
Other, and in some cases more symmetric, transformations of these 
congruences are possible by using one of the other permissible forms 
for the quadratic functional equation (2.11). 
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DEVELOPMENT OF CERTAIN QUADRATIC 
FUNCTIONAL EQUATIONS 

HAROLD F. S. JONAH 

1. Introduction. In some work devoted to the derivation of certain 
congruences connected with the solution of Fermât's Last Theorem, 
it was found necessary to develop several quadratic functional equa
tions of a particular function which we shall define later. This note 
will deal with the derivation of these functional equations. Maier1 

derived two such quadratic functional equations for a generating 
function of the Bernoulli polynomials. This work of Maier serves as 
the basis for our developments. 

2. The Maier results. The function, fix, u), used by Maier was 
defined by the infinite series 

+Q0 g2icixr 

(2.i) E —r-> 
*_co u + r 

where x is a real variable satisfying the inequality 0 < J C < 1 , and where 
u is a real variable subject to the restriction u^O (mod 1). Maier, 
then, showed that if u, v, x} £ are such that w, v, (u+v)f^0 (mod 1) 
and 0 < £ < # < 1 , that the function ƒ(#, u) is a solution of the func
tional equation 

(2 2) f{X' U)m V) " M U + V)f{X " *' U) 

- ƒ(*, u + v)f(x - £, - v). 

Received by the editors April 21, 1944. 
1 W. Maier, Zur Theorie der elliptischen Funktionen, Math. Ann. vol. 104 (1930) 

pp. 745-769. 


