EXTENSION OF A THEOREM OF BOCHNER ON EXPRESSING FUNCTIONALS AS RIEMANN INTEGRALS

BROCKWAY McMILLAN AND PACO LAGERSTROM

Introduction. S. Bochner ${ }^{1}$ has shown that an additive homogeneous functional defined over a sufficiently large class C of functions can be realized as a Riemann integral with respect to a finitely additive measure V in the space X over which the functions are defined. His proof makes use of the fact that the constant function belongs to C, as a result, $V(X)$ is finite. It is the purpose of this note to show that a similar theorem holds even when $V(X)$ turns out to be infinite. A modification of Bochner's proof would suffice for this stronger theorem. We have chosen rather to treat it as a problem of extending the domain of definition of the given functional.

Throughout we have used the symbol \rightarrow to be read as "implies." The equality \equiv is used to denote an equality which holds by definition.

Notations. We consider a space X of points x, and real-valued point functions f, g, • over X. Given f, g, and real numbers a, b, we shall write

$$
|f|, a f+b g, f g, f \wedge g, f \vee g, f^{+}, f^{-}
$$

respectively, for those functions whose values for each x are given by

$$
\begin{aligned}
& |f(x)|, \quad a f(x)+b g(x), \quad f(x) g(x), \quad \inf [f(x), g(x)], \\
& \sup [f(x), g(x)], \quad \sup [f(x), 0], \quad \sup [-f(x), 0] .
\end{aligned}
$$

We shall write a for the constant function $f(x)=a$, and write $f \geqq g$ if for each $x, f(x) \geqq g(x)$. The function which coincides with f on a set A and is equal to 0 in $X-A$ will be denoted by f_{A}. In particular we write 1_{A} for the characteristic function of the set A. The symbol \varnothing will denote the empty set.

It is clear that $f=f^{+}-f^{-}$, and that

$$
\left(f_{A}\right)^{+}=\left(f^{+}\right)_{A}, \quad\left(f_{A}\right)^{-}=\left(f^{-}\right)_{A}
$$

1. R-measure.
1.1. By an R-measure in X we shall mean a set function $V(E)$ defined for sets E of a family A with the following properties:
[^0]If $E, E_{1}, E_{2} \in \mathbf{A}$, then
(1) $E_{1} \cup E_{2} \in \mathbf{A}$,
(2) $X-E \in \mathbf{A}$,
(3) $0 \leqq V(E) \leqq \infty$,
(4) $V(E)=0$, and $B \subset E \rightarrow B \in \mathbf{A}$,
(5) $E_{1} \cap E_{2}=\varnothing \rightarrow V\left(E_{1} \cup E_{2}\right)=V\left(E_{1}\right)+V\left(E_{2}\right)$.

Also
(6) there exists an $E \in \mathbf{A}$ with $0<V(E)<\infty$.
1.2. Remark. (1), (2) imply $E_{1} \cap E_{2} \in \mathbf{A}, E_{1}-E_{2} \in \mathbf{A}, \varnothing \in \mathbf{A}, X \in \mathbf{A}$.
2. The Riemann integral. Let Δ be the class of all partitions δ of X into finitely many pairwise disjoint sets of A. Given any $f \geqq 0$, bounded on $E \in \mathbf{A}$ with $V(E)<\infty$, we define
2.1

$$
S_{u}(f, E, \delta) \equiv \sum_{D \in \delta} V(D \cap E)\left(\sup \left\{f_{E}(x) \mid x \in D\right\}\right)
$$

2.2
2.3

$$
\begin{aligned}
S_{l}(f, E, \delta) & \equiv \sum_{D \in \delta} V(D \cap E)\left(\inf \left\{f_{E}(x) \mid x \in D\right\}\right) \\
S_{u}(f, E) & \equiv \inf \left\{S_{u}(f, E, \delta) \mid \delta \in \Delta\right\} \\
S_{l}(f, E) & \equiv \sup \left\{S_{l}(f, E, \delta) \mid \delta \in \Delta\right\} \\
S_{u}(f) & \equiv \sup \left\{S_{u}(f, E) \mid E \in \mathbf{A}, V(E)<\infty\right\} \\
S_{l}(f) & \equiv \sup \left\{S_{l}(f, E) \mid E \in \mathbf{A}, V(E)<\infty\right\}
\end{aligned}
$$

We define the function classes

$$
\begin{align*}
& R_{E} \equiv\left\{f \mid S_{u}\left(f^{+}, E\right)=S_{l}\left(f^{+}, E\right)<\infty\right. \\
&\left.S_{u}\left(f^{-}, E\right)=S_{l}\left(f^{-}, E\right)<\infty\right\} \\
& R \equiv\left\{f \mid S_{u}\left(f^{+}\right), S_{u}\left(f^{-}\right)<\infty \quad \text { and } \quad\left(V(E)<\infty \rightarrow f \in R_{E}\right)\right\}
\end{align*}
$$

Finally,
2.5

$$
f \in R \rightarrow \int f \equiv S_{u}\left(f^{+}\right)-S_{u}\left(f^{-}\right)
$$

It is easily shown that the supremum and infimum in 2.2 are in fact monotone limits over the directed set of partitions $\delta \in \Delta, \Delta$ being ordered by refinement. From this fact and from the definition it then follows that (when $E, E_{1}, E_{2} \in \mathbf{A}$ and $V(E), V\left(E_{i}\right)<\infty$)
$2.6 f \geqq 0$ and $E_{1} \subset E_{2} \rightarrow 0 \leqq S_{u}\left(f, E_{1}\right) \leqq S_{u}\left(f, E_{2}\right)$,
$2.7 \quad f \geqq 0 \rightarrow S_{u}(f, E)=S_{u}\left(f_{E}\right), \quad S_{l}(f, E)=S_{l}\left(f_{E}\right)$,
$2.8 \quad f \in R_{E} \rightarrow\left(f_{E} \in R \quad\right.$ and $\left.\int f_{E}=S_{l}\left(f^{+}, E\right)-S_{l}\left(f^{-}, E\right)\right)$,
$2.9 f \in R$ and $f \geqq 0 \rightarrow \int f=\sup \left\{\int f_{E} \mid E \in A, V(E)<\infty\right\}$,
$2.91 f \in R \rightleftarrows f^{+}, f^{-} \in R$,
2.92

$$
\int a f+b g=a \int f+b \int g .
$$

3. Modules.

3.1. A class C of real-valued functions over X, together with a realvalued linear functional L defined over C, is called a module if it satisfies conditions 3.1 (1)-(11) below. (f, g denote elements of C; a, a real number.)
(1) Each f in C is bounded.
(2) $f+g \in C$.
(3) $a f \in C$.
(4) $f \wedge 0 \in C$.
(5) $f \wedge 1 \in C$.
(6) $|L(f)|<\infty$.
(7) $L(f+g)=L(f)+L(g)$.
(8) $L(a f)=a L(f)$.
(9) $f \geqq 0 \rightarrow L(f) \geqq 0$.
(10) There exists an $f \in C$ with $L(f)>0$.
(11) $\operatorname{Inf}_{a>0} L(f \wedge a) \leqq 0$.

The main theorem of this paper is:
3.2. If C is a module, there exists an R-measure $V(E)$ in X such that (1) $C \subset R$, (2) $f \in C \rightarrow L(f)=\int f$, (3) given $e>0$ and $g \in R$, with $g \geqq 0$, there exists an $f \in C$ such that $0 \leqq f \leqq g$ and $L(f) \leqq \int g<L(f)+e$.

Before constructing the R-measure we prove some elementary properties of a module C.

$$
f, g \in C \rightarrow f \vee g, f \wedge g \in C . \quad \text { For example, }
$$ $f \vee g=g-(g-f) \wedge 0$.

$3.4 f \in C, a>0 \rightarrow f \wedge a \in C$, for $f \wedge a=a \cdot(1 / a) f \wedge 1$.
$3.5 f, g \in C, f \geqq g \rightarrow L(f) \geqq L(g)$, for $L(f)-L(g)=L(f-g) \geqq 0$.
$3.6 f, 1_{A} \in C \rightarrow f_{A}=f \cdot 1_{A} \in C$, for $0 \leqq f(x) \leqq b \rightarrow f_{A}=f \wedge b 1_{A}$.
4. Completion of a module. In 4.1-4.5 below, f, h denote elements of a module C, while g may be any function.
4.1. $L_{u}(g) \equiv \inf \{L(h) \mid h \geqq g\}$ (if there exists an h, such that $h \geqq g$).
4.2. $L_{l}(g) \equiv \sup \{L(f) \mid f \leqq g\}$ (if there exists an f such that $f \leqq g$).
4.3. $C^{*} \equiv\left\{g \mid L_{u}(g)=L_{l}(g)\right\}$.
4.4. $L^{*}(g) \equiv L_{u}(g)=L_{l}(g)$ (for $\left.g \in C^{*}\right)$.
4.5. $C \subset C^{*}$ and $L^{*}(f)=L(f)$.
4.6. C^{*} is a module. We show (except for some obvious cases) that C^{*} has properties (1)-(11) of 3.1.
(3) and (8): Suppose $g \in C^{*}$ and, say, $a<0$. Then

$$
\{f \mid f \leqq a g\}=\{a h \mid h \geqq g\}
$$

Hence

$$
L_{l}(a g)=\sup \{L(a h) \mid h \geqq g\}=a \inf \{L(h) \mid h \geqq g\}=a L^{*}(g)
$$

Similarly

$$
L_{u}(a g)=a L^{*}(g)
$$

(2) and (7): Suppose $g_{1}, g_{2} \in C^{*}$. Then

$$
\left\{f_{1}+f_{2} \mid f_{i} \leqq g_{i}\right\} \subset\left\{f \mid f \leqq g_{1}+g_{2}\right\}
$$

Hence $L_{l}\left(g_{1}\right)+L_{l}\left(g_{2}\right) \leqq L_{l}\left(g_{1}+g_{2}\right)$ and, dually, $L_{u}\left(g_{1}+g_{2}\right) \leqq L_{u}\left(g_{1}\right)$ $+L_{u}\left(g_{2}\right)$. (2) and (7) then follow from the fact that $L_{l}\left(g_{1}+g_{2}\right)$ $\leqq L_{u}\left(g_{1}+g_{2}\right)$.
(4) and (5) follow from the inequality

$$
h-f \geqq(h \wedge x)-(f \wedge x)
$$

(11) follows from the fact that every $g \in C^{*}$ is covered by an $h \in C$, and that 3.5 does not depend on (11).
4.7. C^{*} is complete, in the sense that the process of extension described in 4.1-4.3 does not yield any new functions when applied to C^{*}.

Proof. It follows from 4.2 and 4.4 that

$$
\sup \left\{L^{*}(f) \mid f \in C^{*}, f \leqq g\right\}=\sup \{L(f) \mid f \in C, f \leqq g\}
$$

and similarly for the approximations from above.
4.8. Let C be any module. Given $f \in C$ and a number $a>0$, let 1_{a} be the characteristic function of the set $\{x \mid f(x) \geqq a\}$. For each $f \in C$ there exists an everywhere dense set S of real numbers $a>0$ such that $a \in S \rightarrow 1_{a} \in C^{*}$, where C^{*} is the completion of C. Since C^{*} is a module and is its own completion we have as a corollary the same theorem with the weaker assumption $f \in C^{*}$.

Proof. We shall prove the stronger result that there is at most a countable set $\left\{a_{i}\right\}$ of numbers $a_{i}>0$ such that $1_{a_{i}}$ is not in C^{*}. Given $e>0$, consider any $a \geqq e$ and numbers $b, c>0$ with $c \leqq e$. For any $d \geqq 0$ let $f^{d}=f \wedge d \in C$. Let $\phi(d)=L\left(f^{d}\right)$. We have

$$
\begin{equation*}
c^{-1}\left\{f^{a}-f^{a-c}\right\} \geqq 1_{a} \geqq b^{-1}\left\{f^{a+b}-f^{a}\right\} \tag{1}
\end{equation*}
$$

as may be seen by analyzing the three cases

$$
f(x) \geqq a+b, \quad a \leqq f(x)<a+b, \quad f(x)<a
$$

Using 4.6 and (7), (8) of 3.1, we have from (1) that
(2) $c^{-1}[\phi(a)-\phi(a-c)] \geqq L_{u}\left(1_{a}\right) \geqq L_{l}\left(1_{a}\right) \geqq b^{-1}[\phi(a+b)-\phi(a)]$.

The outside inequalities imply that $\phi(a)$ is a convex function for $a \geqq e$. Taking limits in (2) as $b, c \rightarrow 0$, we have further that

$$
D^{-} \phi(a) \geqq L_{u}\left(1_{a}\right) \geqq L_{l}\left(1_{a}\right) \geqq D^{+} \phi(a) .
$$

Since $\phi(a)$ is convex in the interval in question, $D^{-} \phi \neq D^{+} \phi$ at most at a countable number of points $\left\{a_{i}^{\prime}\right\}, a_{i}^{\prime} \geqq e$. Hence when $a \geqq e$ is not in $\left\{a_{i}^{\prime}\right\}, D^{-} \phi=D^{+} \phi$ and $1_{a} \in C^{*}$ by 4.3. By taking successively $e=1 / n, n=1,2, \cdots$, we get at most a countable sum of countable sets-that is, at most a countable set $\left\{a_{i}\right\}$-in the interval $a>0$ such that $1_{a_{i}}$ is not in C^{*}.
4.9. Let $\mathrm{A}^{*}=\left\{A \mid 1_{A} \in C^{*}\right\}$. Then

$$
f \in C^{*} \rightarrow L^{*}(f)=\lim L^{*}\left(f_{A}\right)
$$

where the limit is the limit taken on the directed system A^{*} ordered by \supset.

Proof. It is sufficient to prove 4.9 for $f \geqq 0$. By 4.8 there exists a sequence $a_{n} \downarrow 0$ such that the characteristic functions 1_{n} of the sets $\left\{x \mid f(x) \geqq a_{n}\right\}$ are all in C^{*}. Put $g_{n}=f-\left(f \wedge a_{n}\right)$. Then $g_{n} \in C^{*}, g_{n} \leqq f$, and $g_{n} \cdot 1_{n}=g_{n}$. Hence

$$
L^{*}\left(g_{n}\right) \leqq L^{*}\left(f \cdot 1_{n}\right) \leqq L^{*}(f)
$$

But inf $L^{*}\left(f-g_{n}\right)=0$ by 3.1 , (11), 4.9 for $f \geqq 0$ now follows, since if $f \geqq 0$

$$
\begin{aligned}
L^{*}(f) \geqq \lim _{A} L^{*}\left(f_{A}\right) & =\sup \left\{L^{*}\left(f_{A}\right) \mid A \in \mathbf{A}^{*}\right\} \\
& \geqq \sup _{n} L^{*}\left(f \cdot 1_{n}\right) \geqq \sup _{n} L^{*}\left(g_{n}\right)=L^{*}(f)
\end{aligned}
$$

5. Extension of L^{*} to "unbounded" functions.

5.1. $C^{* *} \equiv\left\{f \mid A \in \mathrm{~A}^{*} \rightarrow f_{A} \in C^{*}\right\}$.
5.2(a). $L^{* *}(f) \equiv \lim _{A} L^{*}\left(f_{A}\right)$ (for $f \in C^{* *}, f \geqq 0$). Here the limit is taken as in 4.9.
5.2. $L^{* *}(f) \equiv L^{* *}\left(f^{+}\right)-L^{* *}\left(f^{-}\right)=\lim _{A} L^{*}\left(f_{A}^{+}\right)-\lim _{A} L^{*}\left(f_{A}^{-}\right)=\lim _{A} L^{*}\left(f_{A}\right)$ (for $f \in C^{* *}$ and $L^{* *}\left(f^{+}\right), L^{* *}\left(f^{-}\right)<\infty$). Thus $\left|L^{* *}(f)\right|<\infty$, except possibly if $f>0$.
5.3. $C^{*} \subset C^{* *}$ and $f \in C^{*} \rightarrow L^{* *}(f)=L^{*}(f)(3.6,4.9)$.
5.4. $f \geqq 0 \rightarrow L^{* *}(f) \geqq 0$.
5.5. $f, g \in C^{* *} \rightarrow a f+b g \in C^{* *}$ and (if $\left.L^{* *}(f), L^{* *}(g)<\infty\right) L^{* *}(a f+b g)$ $=a L^{* *}(f)+b L^{* *}(g)$, since $(a f+b g) \cdot 1_{A}=a \cdot f 1_{A}+b \cdot g 1_{A}$, and $L^{* *}$ is defined as a limit on the directed set \mathbf{A}^{*}.
5.6. $f \leqq g \rightarrow L^{* *}(f) \leqq L^{* *}(g)(5.4,5.5)$.
5.7. $0 \leqq f \leqq g$ and $g \in C^{* *}$ and $L^{* *}(g)=0 \rightarrow f \in C^{* *}$ and $L^{* *}(f)=0$. For $f_{A} \in C^{*}$ by 4.7 . Hence by $5.4,5.6$

$$
f \in C^{* *}, \quad \text { and } \quad L^{* *}(f)=0
$$

5.8. $f, 1_{E} \in C^{* *} \rightarrow f_{E} \in C^{* *}$. For $1_{A} \in C^{*} \rightarrow\left(f_{E}\right) 1_{A}=\left(f_{A}\right)\left(1_{E} 1_{A}\right) \in C^{*}$ by 3.6.
5.9. $f \in C^{* *}, f \geqq 0 \rightarrow L^{* *}(f)=\sup \left\{L^{* *}\left(f_{A}\right) \mid 1_{A} \in C\right\}(5.6,4.9,5.3)$.
5.10. $1_{x}=1 \in C^{* *}$ (5.1).

Actually 5.8 is a special case of the following theorem, which however will not be needed for this paper:
5.11. $f, g \in C^{* *} \rightarrow f \cdot g \in C^{* *}$.

Proof. Assume $0 \leqq h, i \in C^{*}$ and $1_{A} \in C^{*}$. It follows from 4.8 that we may subdivide X into a finite number of sets E_{ν} such that $1_{E_{\nu}} \cdot 1_{A} \in C^{*}$ and that the oscillation of h and i on each set is less than e. Denoting by $a_{\nu}^{\prime \prime}, b_{\nu}^{\prime \prime}, a_{\nu}^{\prime}, b_{\nu}^{\prime}$ the maximum and minimum of h and i on E_{ν} we have

$$
\sum a_{\nu}^{\prime} \cdot b_{\nu} \cdot 1_{E_{\nu}} \cdot 1_{A} \leqq h \cdot i \cdot 1_{A} \leqq \sum a_{\nu}^{\prime \prime} \cdot b_{\nu}^{\prime \prime} \cdot 1_{E_{\nu}} \cdot 1_{A} .
$$

Hence by the completeness of $C^{*}: h \cdot i \cdot 1_{A} \in C^{*}$. The theorem now follows since putting $f_{A}=h$ and $g_{h}=i$ we have that $f \cdot g \cdot 1_{A}=f_{A} \cdot g_{A} \in C^{*}$ for every $1_{A} \in C^{*}$.
6. The R-measure defined by $L^{* *}$.
6.1(a). $\mathbf{A} \equiv\left\{E \mid 1_{E} \in C^{* *}\right\}$.
6.1(b). $V(E) \equiv L^{* *}\left(1_{E}\right)$ (for $\left.E \in \mathrm{~A}\right)$.
6.1(c). $\mathbf{A}^{\prime} \equiv\{E \mid E \in \mathbf{A}$ and $V(E)<\infty\}$.

From these definitions it follows:
6.2. V is an R-measure as defined in $\S 1$.

Proof. The properties (1)-(5) are obvious from §5. As for (6), we have from 3.1 (10) an $f \in C$ with $L(f)>0$. We can assume $0 \leqq f(x) \leqq 1$. If $L^{*}\left(f 1_{A}\right)=0$ for all $1_{A} \in C^{*}$, then $L(f)=0$ by $4.9,4.5$. Hence for one $1_{A}, L^{*}\left(f_{A}\right)>0$. But $1_{A} \geqq f_{A}$. Hence $L^{*}\left(1_{A}\right)=V(A)>0$.
7. Comparison of $L^{* *}(f)$ and $\int f(x) d V$.
7.1. $f \in C^{*}, f=f_{E} \geqq 0, E \in \mathbf{A}^{\prime} \rightarrow f \in R_{E}$ and $\int f=L^{*}(f)$.

Proof. (a) If $V(E)=0$, then $S_{u}\left(f_{E}\right)=S_{l}\left(f_{E}\right)=0=\int f$, since for some
$a \neq 0,0 \leqq a f^{+} \leqq 1_{E}$ and $0 \leqq a f^{-} \leqq 1_{E}$, we have $L^{*}(a f)=0$ by 5.3, 5.7. Hence $L^{*}(f)=0=\int f$.
(b) If $0<V(E)<\infty$, given $e>0$, by 3.1 (1) and 4.8 , there exists a partition δ of X into sets $A_{0}, \cdots, A_{n} \in \mathrm{~A}$ such that

$$
\sup \left\{f(x)-f(y) \mid x, y \in A_{i}\right\}<e[V(E)]^{-1}, \quad i=0, \cdots, n
$$

Let $E_{i}=E A_{i}$. Then $1_{E_{i}}=1_{i} \in C^{* *}$ and hence $f_{i}=f 1_{i} \in C^{* *}$ by 5.8. Letting $b_{i}=\sup \left\{f(x) \mid x \in E_{i}\right\}$, we have

$$
L^{*}(f)=L^{* *}\left(f_{E}\right)=\sum_{i} L^{* *}\left(f 1_{i}\right)
$$

and

$$
S_{u}(f, E, \delta)=\sum_{i} V\left(E_{i}\right) b_{i}=\sum_{i} L^{* *}\left(1_{i} \cdot b_{i}\right)
$$

Hence $\left|L^{*}(f)-S_{u}(f, E, \delta)\right|<e$ and $L^{*}(f)=S_{u}(f, E)$. Similarly $L^{*}(f)=S(f, E)$.
7.2. If $f \geqq 0$, if $f \in R_{A}$ for $A \in A^{*}$, and if f is bounded on any $E \in \mathbf{A}$, then
(a) $f \in R_{E}$ for every $E \in \mathrm{~A}^{\prime}$,
(b) $\sup \left\{\int f_{E} \mid E \in \mathbf{A}^{\prime}\right\}=\sup \left\{\int f_{A} \mid A \in \mathbf{A}^{*}\right\}$.

Proof. Since f is bounded on E and $L^{* *}\left(1_{E}\right)<\infty, S_{u}(f, E)-S_{u}(f, A)$ $<e / 2$ for some $1_{A_{1}} \in C^{*}, 1_{A_{1}} \leqq 1_{E}$. Dually $S_{l}(f, E)-S_{l}\left(f, A_{2}\right)<e / 2$ $\left(1_{A_{2}} \in C^{*}, 1_{A_{2}} \leqq 1_{E}\right)$. The inequalities still hold if we replace A_{1} and A_{2} by $A=A_{1} \cup A_{2}$. Since $S_{u}(f, A)=S_{l}(f, A)$ we have $S_{u}(f, E)-S_{l}(f, E)<e$ for any e. Hence $f \in R_{E}$ and $\int f_{E}-\int f_{A}<e$ from which (b) follows.
7.3. $f \in C^{*} \rightarrow f \in R$ and $\int f=L^{*}(f)$.

Proof. Assume $f \geqq 0$. By 7.1, $f_{A} \in R_{A}$, that is, $f \in R_{A}$ for any $A \in \mathbf{A}^{*}$ and $\int f_{A}=L^{*}\left(f_{A}\right)$. Since f is bounded, $f \in R_{E}\left(E \in \mathrm{~A}^{\prime}\right)$ by 7.2(a). From 7.2 (b) and 4.9 it follows that $\sup \left\{\int f_{E} \mid E \in \mathbf{A}^{\prime}\right\}$ is equal to $L^{*}(f)$, hence finite, and equal to $\int f$ by 2.9. For any $f \in C^{*}, 7.3$ then follows by $2.91,2.92$.
7.4. $f \in R_{A}$ and $A \in \mathrm{~A}^{*} \rightarrow f \in C^{*}$.

Proof. $f \in R_{A}$ means that f can be approximated from above and below by functions $\sum a_{\nu} 1_{A_{\nu}}$ where $A_{\nu} \in A^{*}$. Hence $f \in C^{*}$ by 4.7.
7.5. $f \in R \rightarrow f \in C^{* *}$ and $L^{* *}(f)=\int f$.

Proof. Assume $f \geqq 0$, then $f \in R \rightarrow f_{A} \in R_{A}$ for every $A \in A^{*}$. By 7.4, $f_{A} \in C^{*}$ and hence $f \in C^{* *}$.

Furthermore $\int f=\sup \left\{\int f_{A} \mid A \in \mathbf{A}^{*}\right\}=\sup \left\{L^{*}\left(f_{A}\right) \mid A \in \mathbf{A}^{\prime}\right\}$ $=L^{* *}(f)(2.9,7.2,7.1)$. For any $f \in R, 7.5$ follows from its truth for f^{+}, f^{-}.

The proof of our main theorem, 3.2, is now complete: That V is
an R-measure was shown in $\S 6$, (1) and (2) follow from 7.3, (3) from 7.5 and the definition of $L^{* *}$.

8. Some special cases.

A. 8.1. Assume that $f(x)=1 \in C$ and $L(1)=1$. (This makes 3.1 (5), (10) and (11) redundant, (11) follows from the fact that $L(f \wedge a)$ $\leqq L(a \cdot 1)=a$.) In this case $V(X)=1$ and 3.2 reduces to Bochner's theorem.
B. 8.2. Definition. By an L-extension of V we shall mean a countably additive, complete measure U defined for sets of a countably additive, complemented family \mathbf{B} such that $\mathbf{B} \supset \mathbf{A}$ and for $E \in \mathbf{A}$, $U(E)=V(E)$.
8.3. Replace 3.1 (11) by 3.1 (12): $\left\{f_{n}, g \in C, 0 \leqq f_{n} \leqq g, \lim _{n} f_{n}(x)=0\right.$ for all $x\} \rightarrow \lim _{n} L\left(f_{n}\right)=0$. Then (a) Theorem 3.2 still holds and in addition (b) V possesses an L-extension U such that (c) 3.2 (3) holds when " $g \in R$ " is replaced by " g is measurable and integrable (U)."

Proof. (a) 3.1 (12) implies 3.1 (11). For $f \in C \operatorname{put} f_{n}=\inf (f, 1 / n)$. Then $\inf _{a>0} L(f \wedge a) \leqq \lim L\left(f_{n}^{+}\right)=0$.
(b) It is known ${ }^{2}$ that any V with properties 1.1 (1)-(5) possesses an L-extension if and only if V has the additional property: $\left\{E_{n} \in \mathbf{A}\right.$, $\left.E_{n} \geqq E_{n+1}, V\left(E_{1}\right)<\infty, \cap_{n} E_{n}=\varnothing\right\} \rightarrow \lim _{n} V\left(E_{n}\right)=0$. That V has this property follows from
8.4. $\left\{f_{n} \in C^{* *}, f_{n} \geqq f_{n+1}\right.$, for each $\left.x \inf f_{n}(x)=0, L^{* *}\left(f_{1}\right)<\infty\right\}$ $\rightarrow \lim L^{* *}\left(f_{n}\right)=0$.

Proof. Suppose that for all $n, L^{* *}\left(f_{n}\right) \geqq e>0$. Since $L^{* *}\left(f_{n}\right)<\infty$ there exists an $A \in \mathrm{~A}^{*}$ such that $L^{* *}\left(f_{1}-f_{1 A}\right) \leqq e / 2$. Since $\left(1-1_{A}\right) f_{n}$ $\leqq\left(1-1_{A}\right) f_{1}$ we also have $L^{* *}\left(f_{n}-f_{n A}\right) \leqq e / 2$, and $L^{* *}\left(f_{n A}\right) \geqq e / 2$ for all n. Hence we can find a $g_{n} \in C$ such that $0 \leqq g_{n} \leqq f_{n A}$ and $L\left(g_{n}\right) \geqq e / 3$. But evidently for each $x, \lim g_{n}(x)=0$. Since there exists a $g \in C$ such that $g \geqq f_{1} \cdot 1_{A}>g_{n}$, this contradicts 3.1 (12).
(c) To show that the analogue of 3.2 (3) holds for g measurable and integrable (U), we point out that (a) is sufficient to show that 3.2 (3) holds when g is the characteristic function of a set B measurable (U) with $U(B)<\infty$ and (b) if U is an L-extension of V then, given $e>0, V$ contains an $E \in \mathrm{~A}$ such that $V(E)>U(E)-e$. The result then follows from 3.2 (3).
(a) is a consequence of the ordinary Lebesgue theory while (b) results from the manner in which U is defined as an extension of $V .{ }^{2}$

Princeton University

[^1]
[^0]: Received by the editors January 10, 1943, and, in revised form, September 5, 1944.
 ${ }^{1}$ S. Bochner, Additive set functions on groups, Ann. of Math. vol. 40 (1939) pp. 769-799. The theorem in question occurs in paragraph 4.

[^1]: ${ }^{2}$ This theorem is proved by Kolmogoroff (A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933) for the case $V(X)=1$. When X is the sum of countably many sets of finite measure, the proof given by Jessen (B. Jessen, Abstrakt maal- og integraltheorie, 1, Matematisk Tidsskrift (B) (1934) p. 78) applies. The proof in the general case follows by a modification of that of Jessen.

