EXTENSION OF A THEOREM OF BOCHNER ON EXPRESS-ING FUNCTIONALS AS RIEMANN INTEGRALS

BROCKWAY MCMILLAN AND PACO LAGERSTROM

Introduction. S. Bochner¹ has shown that an additive homogeneous functional defined over a sufficiently large class C of functions can be realized as a Riemann integral with respect to a finitely additive measure V in the space X over which the functions are defined. His proof makes use of the fact that the constant function belongs to C, as a result, V(X) is finite. It is the purpose of this note to show that a similar theorem holds even when V(X) turns out to be infinite. A modification of Bochner's proof would suffice for this stronger theorem. We have chosen rather to treat it as a problem of extending the domain of definition of the given functional.

Throughout we have used the symbol \rightarrow to be read as "implies." The equality \equiv is used to denote an equality which holds by definition.

Notations. We consider a space X of points x, and real-valued point functions f, g, \cdots over X. Given f, g, and real numbers a, b, we shall write

$$|f|$$
, $af + bg$, fg , $f \wedge g$, $f \vee g$, f^+ , f^- ,

respectively, for those functions whose values for each x are given by

$$| f(x) |, \quad af(x) + bg(x), \quad f(x)g(x), \quad \inf [f(x), g(x)], \\ \sup [f(x), g(x)], \quad \sup [f(x), 0], \quad \sup [-f(x), 0].$$

We shall write a for the constant function f(x) = a, and write $f \ge g$ if for each $x, f(x) \ge g(x)$. The function which coincides with f on a set A and is equal to 0 in X - A will be denoted by f_A . In particular we write 1_A for the characteristic function of the set A. The symbol \emptyset will denote the empty set.

It is clear that $f = f^+ - f^-$, and that

$$(f_A)^+ = (f^+)_A, \qquad (f_A)^- = (f^-)_A.$$

1. *R*-measure.

1.1. By an *R*-measure in X we shall mean a set function V(E) defined for sets E of a family **A** with the following properties:

Received by the editors January 10, 1943, and, in revised form, September 5, 1944. ¹ S. Bochner, *Additive set functions on groups*, Ann. of Math. vol. 40 (1939) pp.

^{75.} Bochner, Additive set functions on groups, Ann. of Math. vol. 40 (1939) pp. 769–799. The theorem in question occurs in paragraph 4.

If E, E_1 , $E_2 \in \mathbf{A}$, then (1) $E_1 \cup E_2 \in \mathbf{A}$, (2) $X - E \in \mathbf{A}$, (3) $0 \leq V(E) \leq \infty$, (4) V(E) = 0, and $B \subset E \rightarrow B \in \mathbf{A}$, (5) $E_1 \cap E_2 = \emptyset \rightarrow V(E_1 \cup E_2) = V(E_1) + V(E_2)$. Also

(6) there exists an $E \in \mathbf{A}$ with $0 < V(E) < \infty$.

1.2. Remark. (1), (2) imply
$$E_1 \cap E_2 \in \mathbf{A}$$
, $E_1 - E_2 \in \mathbf{A}$, $\emptyset \in \mathbf{A}$, $X \in \mathbf{A}$.

2. The Riemann integral. Let Δ be the class of all partitions δ of X into finitely many pairwise disjoint sets of A. Given any $f \ge 0$, bounded on $E \in \mathbf{A}$ with $V(E) < \infty$, we define

2.1

$$S_{u}(f, E, \delta) \equiv \sum_{D \in \delta} V(D \cap E)(\sup \{f_{E}(x) \mid x \in D\}),$$

$$S_{l}(f, E, \delta) \equiv \sum_{D \in \delta} V(D \cap E)(\inf \{f_{E}(x) \mid x \in D\}),$$

$$S_{u}(f, E) \equiv \inf \{S_{u}(f, E, \delta) \mid \delta \in \Delta\},$$

$$S_{l}(f, E) \equiv \sup \{S_{l}(f, E, \delta) \mid \delta \in \Delta\},$$

$$S_{u}(f) \equiv \sup \{S_{u}(f, E) \mid E \in \mathbf{A}, V(E) < \infty\},$$

$$S_{u}(f) \equiv \sup \{S_{u}(f, E) \mid E \in \mathbf{A}, V(E) < \infty\},$$

$$S_l(f) \equiv \sup \{S_l(f, E) \mid E \in \mathbf{A}, V(E) < \infty\}.$$

We define the function classes

2.4
$$R_{E} \equiv \{f \mid S_{u}(f^{+}, E) = S_{l}(f^{+}, E) < \infty, \\ S_{u}(f^{-}, E) = S_{l}(f^{-}, E) < \infty \}, \\ R \equiv \{f \mid S_{u}(f^{+}), S_{u}(f^{-}) < \infty \text{ and } (V(E) < \infty \rightarrow f \in R_{E}) \}.$$

Finally,

2.5
$$f \in R \to \int f \equiv S_u(f^+) - S_u(f^-).$$

It is easily shown that the supremum and infimum in 2.2 are in fact monotone limits over the directed set of partitions $\delta \in \Delta$, Δ being ordered by refinement. From this fact and from the definition it then follows that (when $E, E_1, E_2 \in \mathbf{A}$ and $V(E), V(E_i) < \infty$)

2.6
$$f \ge 0$$
 and $E_1 \subset E_2 \rightarrow 0 \le S_u(f, E_1) \le S_u(f, E_2)$,

2.7
$$f \ge 0 \rightarrow S_u(f, E) = S_u(f_E), \qquad S_l(f, E) = S_l(f_E),$$

2.8
$$f \in R_E \rightarrow (f_E \in R \text{ and } \int f_E = S_l(f^+, E) - S_l(f^-, E)),$$

2.9
$$f \in R \text{ and } f \ge 0 \rightarrow \int f = \sup \left\{ \int f_E \mid E \in A, V(E) < \infty \right\},$$

2.91
$$f \in R \rightleftharpoons f^+, f^- \in R,$$

2.92 $\int af + bg = a \int f + b \int g$

3. Modules.

3.1. A class C of real-valued functions over X, together with a real-valued linear functional L defined over C, is called a module if it satisfies conditions 3.1 (1)-(11) below. (f, g denote elements of C; a, a real number.)

(1) Each f in C is bounded.

(2) $f+g \in C$. (3) $af \in C$. (4) $f \land 0 \in C$.

- (5) $f \wedge 1 \in C$.
- (6) $|L(f)| < \infty$.

(7) L(f+g) = L(f) + L(g).

- (8) L(af) = aL(f).
- (9) $f \ge 0 \rightarrow L(f) \ge 0$.
- (10) There exists an $f \in C$ with L(f) > 0.

(11)
$$\operatorname{Inf}_{a>0} L(f \wedge a) \leq 0.$$

The main theorem of this paper is:

3.2. If C is a module, there exists an R-measure V(E) in X such that (1) $C \subset R$, (2) $f \in C \rightarrow L(f) = \int f$, (3) given e > 0 and $g \in R$, with $g \ge 0$, there exists an $f \in C$ such that $0 \le f \le g$ and $L(f) \le \int g < L(f) + e$.

Before constructing the R-measure we prove some elementary properties of a module C.

3.3

$$f, g \in C \to f \lor g, f \land g \in C.$$
 For example,

$$f \lor g = g - (g - f) \land 0.$$

3.4 $f \in C$, $a > 0 \rightarrow f \land a \in C$, for $f \land a = a \cdot (1/a) f \land 1$.

3.5 $f, g \in C, f \ge g \rightarrow L(f) \ge L(g), \text{ for } L(f) - L(g) = L(f - g) \ge 0.$

3.6
$$f, 1_A \in C \rightarrow f_A = f \cdot 1_A \in C$$
, for $0 \leq f(x) \leq b \rightarrow f_A = f \land b \cdot 1_A$.

4. Completion of a module. In 4.1-4.5 below, f, h denote elements of a module C, while g may be any function.

4.1. $L_u(g) \equiv \inf \{L(h) \mid h \ge g\}$ (if there exists an h, such that $h \ge g$). 4.2. $L_l(g) \equiv \sup \{L(f) \mid f \le g\}$ (if there exists an f such that $f \le g$).

1945]

4.3. $C^* \equiv \{g | L_u(g) = L_l(g) \}.$

4.4.
$$L^*(g) \equiv L_u(g) = L_l(g)$$
 (for $g \in C^*$).

4.5. $C \subset C^*$ and $L^*(f) = L(f)$.

4.6. C^* is a module. We show (except for some obvious cases) that C^* has properties (1)-(11) of 3.1.

(3) and (8): Suppose $g \in C^*$ and, say, a < 0. Then

$$\{f \mid f \leq ag\} = \{ah \mid h \geq g\}.$$

Hence

$$L_l(ag) = \sup \{L(ah) \mid h \ge g\} = a \inf \{L(h) \mid h \ge g\} = aL^*(g).$$

Similarly

$$L_u(ag) = aL^*(g).$$

(2) and (7): Suppose $g_1, g_2 \in C^*$. Then

$$\{f_1 + f_2 \mid f_i \leq g_i\} \subset \{f \mid f \leq g_1 + g_2\}.$$

Hence $L_{l}(g_{1})+L_{l}(g_{2}) \leq L_{l}(g_{1}+g_{2})$ and, dually, $L_{u}(g_{1}+g_{2}) \leq L_{u}(g_{1})$ + $L_{u}(g_{2})$. (2) and (7) then follow from the fact that $L_{l}(g_{1}+g_{2})$ $\leq L_{u}(g_{1}+g_{2})$.

(4) and (5) follow from the inequality

$$h-f \ge (h \land x) - (f \land x).$$

(11) follows from the fact that every $g \in C^*$ is covered by an $h \in C$, and that 3.5 does not depend on (11).

4.7. C^* is complete, in the sense that the process of extension described in 4.1-4.3 does not yield any new functions when applied to C^* .

PROOF. It follows from 4.2 and 4.4 that

$$\sup \{L^{*}(f) \mid f \in C^{*}, f \leq g\} = \sup \{L(f) \mid f \in C, f \leq g\},\$$

and similarly for the approximations from above.

4.8. Let C be any module. Given $f \in C$ and a number a > 0, let 1_a be the characteristic function of the set $\{x | f(x) \ge a\}$. For each $f \in C$ there exists an everywhere dense set S of real numbers a > 0 such that $a \in S \rightarrow 1_a \in C^*$, where C^* is the completion of C. Since C^* is a module and is its own completion we have as a corollary the same theorem with the weaker assumption $f \in C^*$.

PROOF. We shall prove the stronger result that there is at most a countable set $\{a_i\}$ of numbers $a_i > 0$ such that 1_{a_i} is not in C^* . Given e > 0, consider any $a \ge e$ and numbers b, c > 0 with $c \le e$. For any $d \ge 0$ let $f^d = f \land d \in C$. Let $\phi(d) = L(f^d)$. We have

254

[April

(1)
$$c^{-1}{f^a - f^{a-c}} \ge 1_a \ge b^{-1}{f^{a+b} - f^a},$$

as may be seen by analyzing the three cases

$$f(x) \ge a + b$$
, $a \le f(x) < a + b$, $f(x) < a$.

Using 4.6 and (7), (8) of 3.1, we have from (1) that

(2)
$$c^{-1}[\phi(a) - \phi(a - c)] \ge L_u(1_a) \ge L_l(1_a) \ge b^{-1}[\phi(a + b) - \phi(a)].$$

The outside inequalities imply that $\phi(a)$ is a convex function for $a \ge e$. Taking limits in (2) as b, $c \rightarrow 0$, we have further that

$$D^{-}\phi(a) \ge L_u(1_a) \ge L_l(1_a) \ge D^{+}\phi(a).$$

Since $\phi(a)$ is convex in the interval in question, $D^-\phi \neq D^+\phi$ at most at a countable number of points $\{a_i'\}$, $a_i' \geq e$. Hence when $a \geq e$ is not in $\{a_i'\}$, $D^-\phi = D^+\phi$ and $1_a \in C^*$ by 4.3. By taking successively e=1/n, $n=1, 2, \cdots$, we get at most a countable sum of countable sets—that is, at most a countable set $\{a_i\}$ —in the interval a > 0 such that 1_{a_i} is not in C^* .

4.9. Let $\mathbf{A}^* = \{A \mid 1_A \in C^*\}$. Then

$$f \in C^* \to L^*(f) = \lim L^*(f_A),$$

where the limit is the limit taken on the directed system A^* ordered by \supset .

PROOF. It is sufficient to prove 4.9 for $f \ge 0$. By 4.8 there exists a sequence $a_n \downarrow 0$ such that the characteristic functions 1_n of the sets $\{x \mid f(x) \ge a_n\}$ are all in C^* . Put $g_n = f - (f \land a_n)$. Then $g_n \in C^*$, $g_n \le f$, and $g_n \cdot 1_n = g_n$. Hence

$$L^*(g_n) \leq L^*(f \cdot 1_n) \leq L^*(f).$$

But inf $L^*(f-g_n)=0$ by 3.1, (11), 4.9 for $f \ge 0$ now follows, since if $f \ge 0$

$$L^*(f) \ge \lim_{A} L^*(f_A) = \sup_{A} \left\{ L^*(f_A) \mid A \in \mathbb{A}^* \right\}$$
$$\ge \sup_{a} L^*(f \cdot 1_a) \ge \sup_{a} L^*(g_a) = L^*(f).$$

5. Extension of L^* to "unbounded" functions.

5.1. $C^{**} \equiv \{f \mid A \in \mathbf{A}^* \rightarrow f_A \in C^*\}.$

5.2(a). $L^{**}(f) \equiv \lim_{A} L^{*}(f_{A})$ (for $f \in C^{**}$, $f \ge 0$). Here the limit is taken as in 4.9.

5.2. $L^{**}(f) \equiv L^{**}(f^+) - L^{**}(f^-) = \lim_A L^*(f_A^+) - \lim_A L^*(f_A^-) = \lim_A L^*(f_A)$ (for $f \in C^{**}$ and $L^{**}(f^+)$, $L^{**}(f^-) < \infty$). Thus $|L^{**}(f)| < \infty$, except possibly if f > 0.

1945]

5.3. $C^* \subset C^{**}$ and $f \in C^* \to L^{**}(f) = L^*(f)$ (3.6, 4.9). 5.4. $f \ge 0 \to L^{**}(f) \ge 0$.

5.5. $f, g \in C^{**} \rightarrow af + bg \in C^{**}$ and (if $L^{**}(f), L^{**}(g) < \infty$) $L^{**}(af + bg) = aL^{**}(f) + bL^{**}(g)$, since $(af + bg) \cdot 1_A = a \cdot f 1_A + b \cdot g 1_A$, and L^{**} is defined as a limit on the directed set \mathbf{A}^* .

5.6. $f \leq g \rightarrow L^{**}(f) \leq L^{**}(g)$ (5.4, 5.5).

5.7. $0 \leq f \leq g$ and $g \in C^{**}$ and $L^{**}(g) = 0 \rightarrow f \in C^{**}$ and $L^{**}(f) = 0$. For $f_A \in C^*$ by 4.7. Hence by 5.4, 5.6

$$f \in C^{**}$$
, and $L^{**}(f) = 0$

5.8. $f, 1_E \in C^{**} \to f_E \in C^{**}$. For $1_A \in C^* \to (f_E) 1_A = (f_A)(1_E 1_A) \in C^*$ by 3.6.

5.9. $f \in C^{**}, f \ge 0 \rightarrow L^{**}(f) = \sup \{L^{**}(f_A) \mid 1_A \in C\}$ (5.6, 4.9, 5.3). 5.10. $1_X = 1 \in C^{**}$ (5.1).

Actually 5.8 is a special case of the following theorem, which however will not be needed for this paper:

5.11. $f, g \in C^{**} \rightarrow f \cdot g \in C^{**}$.

PROOF. Assume $0 \leq h$, $i \in C^*$ and $1_A \in C^*$. It follows from 4.8 that we may subdivide X into a finite number of sets E_r such that $1_{E_r} \cdot 1_A \in C^*$ and that the oscillation of h and i on each set is less than e. Denoting by a'_r , b'_r , a'_r , b'_r the maximum and minimum of h and i on E_r we have

$$\sum a'_{\nu} \cdot b_{\nu} \cdot \mathbf{1}_{E_{\nu}} \cdot \mathbf{1}_{A} \leq h \cdot i \cdot \mathbf{1}_{A} \leq \sum a'_{\nu} \cdot b'_{\nu} \cdot \mathbf{1}_{E_{\nu}} \cdot \mathbf{1}_{A}.$$

Hence by the completeness of $C^*:h \cdot i \cdot 1_A \in C^*$. The theorem now follows since putting $f_A = h$ and $g_h = i$ we have that $f \cdot g \cdot 1_A = f_A \cdot g_A \in C^*$ for every $1_A \in C^*$.

- 6. The *R*-measure defined by L^{**} . 6.1(a). $A = \{E | 1_E \in C^{**} \}.$
- 0.1(a). $A = \{E | I_E \in C^{++}\}$.

6.1(b). $V(E) \equiv L^{**}(1_E)$ (for $E \in \mathbf{A}$).

6.1(c). $\mathbf{A'} \equiv \{ E \mid E \in \mathbf{A} \text{ and } V(E) < \infty \}.$

From these definitions it follows:

6.2. V is an R-measure as defined in 1.

PROOF. The properties (1)–(5) are obvious from §5. As for (6), we have from 3.1 (10) an $f \in C$ with L(f) > 0. We can assume $0 \leq f(x) \leq 1$. If $L^*(f1_A) = 0$ for all $1_A \in C^*$, then L(f) = 0 by 4.9, 4.5. Hence for one $1_A, L^*(f_A) > 0$. But $1_A \geq f_A$. Hence $L^*(1_A) = V(A) > 0$.

7. Comparison of $L^{**}(f)$ and $\int f(x) dV$.

7.1. $f \in C^*, f = f_E \ge 0, E \in \mathbf{A}' \rightarrow f \in R_E \text{ and } \int f = L^*(f).$

PROOF. (a) If V(E) = 0, then $S_u(f_E) = S_l(f_E) = 0 = \int f$, since for some

 $a \neq 0$, $0 \leq af^+ \leq 1_E$ and $0 \leq af^- \leq 1_E$, we have $L^*(af) = 0$ by 5.3, 5.7. Hence $L^*(f) = 0 = \int f$.

(b) If $0 < V(E) < \infty$, given e > 0, by 3.1 (1) and 4.8, there exists a partition δ of X into sets $A_0, \dots, A_n \in \mathbf{A}$ such that

$$\sup \{f(x) - f(y) \mid x, y \in A_i\} < e[V(E)]^{-1}, \qquad i = 0, \cdots, n.$$

Let $E_i = EA_i$. Then $1_{E_i} = 1_i \in C^{**}$ and hence $f_i = f1_i \in C^{**}$ by 5.8. Letting $b_i = \sup \{f(x) | x \in E_i\}$, we have

$$L^{*}(f) = L^{**}(f_{E}) = \sum_{i} L^{**}(f_{1i})$$

and

$$S_u(f, E, \delta) = \sum_i V(E_i)b_i = \sum_i L^{**}(1_i \cdot b_i).$$

Hence $|L^*(f) - S_u(f, E, \delta)| < e$ and $L^*(f) = S_u(f, E)$. Similarly $L^*(f) = S(f, E)$.

7.2. If $f \ge 0$, if $f \in R_A$ for $A \in A^*$, and if f is bounded on any $E \in \mathbf{A}$, then

(a) $f \in R_E$ for every $E \in \mathbf{A'}$,

(b) sup $\{ \iint E \in \mathbf{A}' \} = \sup \{ \iint A \in \mathbf{A}^* \}.$

PROOF. Since f is bounded on E and $L^{**}(1_E) < \infty$, $S_u(f, E) - S_u(f, A) < e/2$ for some $1_{A_1} \in C^*$, $1_{A_1} \leq 1_E$. Dually $S_l(f, E) - S_l(f, A_2) < e/2$ $(1_{A_2} \in C^*, 1_{A_2} \leq 1_E)$. The inequalities still hold if we replace A_1 and A_2 by $A = A_1 \cup A_2$. Since $S_u(f, A) = S_l(f, A)$ we have $S_u(f, E) - S_l(f, E) < e$ for any e. Hence $f \in R_E$ and $\int f_E - \int f_A < e$ from which (b) follows.

7.3. $f \in C^* \rightarrow f \in R$ and $\int f = L^*(f)$.

PROOF. Assume $f \ge 0$. By 7.1, $f_A \in R_A$, that is, $f \in R_A$ for any $A \in \mathbf{A}^*$ and $\int f_A = L^*(f_A)$. Since f is bounded, $f \in R_E$ $(E \in \mathbf{A}')$ by 7.2(a). From 7.2(b) and 4.9 it follows that sup $\{\int f_E | E \in \mathbf{A}'\}$ is equal to $L^*(f)$, hence finite, and equal to $\int f$ by 2.9. For any $f \in C^*$, 7.3 then follows by 2.91, 2.92.

7.4. $f \in R_A$ and $A \in A^* \rightarrow f \in C^*$.

PROOF. $f \in R_A$ means that f can be approximated from above and below by functions $\sum a_r \mathbf{1}_{A_r}$ where $A_r \in A^*$. Hence $f \in C^*$ by 4.7.

7.5. $f \in R \rightarrow f \in C^{**}$ and $L^{**}(f) = \int f$.

PROOF. Assume $f \ge 0$, then $f \in R \rightarrow f_A \in R_A$ for every $A \in A^*$. By 7.4, $f_A \in C^*$ and hence $f \in C^{**}$.

Furthermore $\int f = \sup \{ \int f_A | A \in \mathbf{A}^* \} = \sup \{ L^*(f_A) | A \in \mathbf{A}' \} = L^{**}(f)$ (2.9, 7.2, 7.1). For any $f \in \mathbb{R}$, 7.5 follows from its truth for f^+, f^- .

The proof of our main theorem, 3.2, is now complete: That V is

an *R*-measure was shown in §6, (1) and (2) follow from 7.3, (3) from 7.5 and the definition of L^{**} .

8. Some special cases.

A. 8.1. Assume that $f(x) = 1 \in C$ and L(1) = 1. (This makes 3.1 (5), (10) and (11) redundant, (11) follows from the fact that $L(f \land a) \leq L(a \cdot 1) = a$.) In this case V(X) = 1 and 3.2 reduces to Bochner's theorem.

B. 8.2. DEFINITION. By an *L*-extension of *V* we shall mean a countably additive, complete measure *U* defined for sets of a countably additive, complemented family **B** such that $\mathbf{B} \supset \mathbf{A}$ and for $E \in \mathbf{A}$, U(E) = V(E).

8.3. Replace 3.1 (11) by 3.1 (12): $\{f_n, g \in C, 0 \leq f_n \leq g, \lim_n f_n(x) = 0 \text{ for all } x\} \rightarrow \lim_n L(f_n) = 0$. Then (a) Theorem 3.2 still holds and in addition (b) V possesses an L-extension U such that (c) 3.2 (3) holds when " $g \in \mathbb{R}$ " is replaced by "g is measurable and integrable (U)."

PROOF. (a) 3.1 (12) implies 3.1 (11). For $f \in C$ put $f_n = \inf(f, 1/n)$. Then $\inf_{a>0} L(f \wedge a) \leq \lim L(f_n^+) = 0$.

(b) It is known² that any V with properties 1.1 (1)-(5) possesses an L-extension if and only if V has the additional property: $\{E_n \in \mathbf{A}, E_n \geq E_{n+1}, V(E_1) < \infty, \bigcap_n E_n = \emptyset\} \rightarrow \lim_n V(E_n) = 0$. That V has this property follows from

8.4. $\{f_n \in C^{**}, f_n \ge f_{n+1}, \text{ for each } x \text{ inf } f_n(x) = 0, L^{**}(f_1) < \infty \}$ $\rightarrow \lim L^{**}(f_n) = 0.$

PROOF. Suppose that for all n, $L^{**}(f_n) \ge e > 0$. Since $L^{**}(f_n) < \infty$ there exists an $A \in \mathbb{A}^*$ such that $L^{**}(f_1 - f_{1A}) \le e/2$. Since $(1 - 1_A)f_n \le (1 - 1_A)f_1$ we also have $L^{**}(f_n - f_{nA}) \le e/2$, and $L^{**}(f_{nA}) \ge e/2$ for all n. Hence we can find a $g_n \in C$ such that $0 \le g_n \le f_{nA}$ and $L(g_n) \ge e/3$. But evidently for each x, $\lim g_n(x) = 0$. Since there exists a $g \in C$ such that $g \ge f_1 \cdot 1_A > g_n$, this contradicts 3.1 (12).

(c) To show that the analogue of 3.2 (3) holds for g measurable and integrable (U), we point out that (a) is sufficient to show that 3.2 (3) holds when g is the characteristic function of a set B measurable (U) with $U(B) < \infty$ and (b) if U is an L-extension of V then, given e > 0, V contains an $E \in \mathbf{A}$ such that V(E) > U(E) - e. The result then follows from 3.2 (3).

(a) is a consequence of the ordinary Lebesgue theory while (b) results from the manner in which U is defined as an extension of $V.^2$ PRINCETON UNIVERSITY

258

² This theorem is proved by Kolmogoroff (A. Kolmogoroff, *Grundbegriffe der* Wahrscheinlichkeitsrechnung, Berlin, 1933) for the case V(X) = 1. When X is the sum of countably many sets of finite measure, the proof given by Jessen (B. Jessen, Abstrakt maal- og integraltheorie, 1, Matematisk Tidsskrift (B) (1934) p. 78) applies. The proof in the general case follows by a modification of that of Jessen.