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In a previous paper, a problem of mathematical "stability" for the 
case of the linear functional equation was studied.1 I t was shown that 
if a transformation f(x) of a vector space E\ into a Banach space £2 
satisfies the inequality \\f(x+y)—f(x)—f(y)\\<e for some e > 0 and 
all x and y in £1, then there exists an additive transformation <j>(x) 
of £1 into E2 such that ||/(*) - 0 ( a ) | | <e . 

In the present paper we consider a stability problem for isometries. 
By an e-isometry of one metric space E into another E' is meant a 
transformation T{x) which changes distances by at most e, where e is 
some positive number; that is, \p(x, y)—p(T(x)1 T(y))\ < e for all x 
and y in E. Given an e-isometry T(x), our object is to establish the 
existence of a true isometry U(x) which approximates T(x) ; more pre
cisely, to establish the existence of a constant k > 0 depending only on 
the metric spaces E and E' such that p(T(x), U(x))<ke for all x 
in E. In this paper this result will be proved for the case in which 
£ = £ ' , where E is n-dimensional Euclidean space or Hubert space 
(not necessarily separable). The case in which E is the space C of 
continuous functions will be treated in another paper. 

The above problem of €-isometries is related to the problem of con
structing space models for sets in which distances between points are 
given only with a certain degree of exactness (measurements are pos
sible only with a certain degree of precision). The question of the 
uniqueness of the idealized model corresponding to the given meas
urements and the extrapolation from the measurements to the model 
could be looked upon as a problem in determining a strict isometry 
from an approximate isometry. 

In the case of certain simple metric spaces, for example the surface 
of the Euclidean sphere, this question can be answered in the affirma
tive, but it may be more difficult for other bounded manifolds. A 
simple but interesting example showing a case where the answer is 
negative has been worked out by R. Swain. 

THEOREM 1. Let E be a complete abstract Euclidean vector space.2 

Presented to the Society, September 5, 1941; received by the editors October 10, 
1944. 

1 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. 
Sci. U. S. A. vol. 27 (1941) pp. 222-224. 

2 A complete Euclidean vector space is a Banach space whose norm is generated 
by an inner product, (x, y).lt includes real Hubert space and ^-dimensional Euclidean 
spaces as special cases. 
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Let T(x) be an e-isometry of E into itself such that T(0) = 0. The limit 
U(x) =limn^O0(T(2nx)/2n) exists f or every x in E and U(x) is an iso
metric transformation. 

PROOF. Put r = \\x\\. Then | | | r ( * ) | | - r | <eand | | | r (* ) - r (2*) | | - r | 
yo\\ | <e/2. Consider the inter-
Ml <'+«], S2=[y; ||y~2y0|| 

< e. Put also y o = T{2x) /2, so that | r -1 
section of the two spheres: 5 i=[y; 
< r + e ] . Now T(x) belongs to this intersection, and for any point y 
of SiC\S2 we have 

2 | | y - y o | | 2 = 2||y||2 + 2 | |y 0 | | 2 -4 (y ,yo) ; 

b - 2yo||2 = Ml2 + 4||y0||
2 - 4(y, y0) < (r + e)2 

and | |y| |2<(r+€)2. It follows that 

2||y - yo||2 < (r + e)2 + ||y||2 - 2||y0||
2 < 2(r + e)2 - 2||y0||

2 

< 2(r + €)2 - 2(r - e/2)2 = 6er + 3€
2/2. 

Hence, || T(x) - r(2*)/2|| <2(€||^||)1/2if \\x\\ è e, and || T(x) - r(2*)/2 || 
<2e in the contrary case. 

Therefore, for all x in E the inequality 

(1) \\T(x/2) - T(x)/2\\ < 2-1/2£(||s||)1'2 + 2e 

is satisfied, where k = 2e1/2. Now let us make the inductive assumption 

(2) Hr(2—a:) — 2-«^(^) || < 2—^^CH^II)1/2^ X2 2-"*/2>\ H~ ( 1 - 2 — ) - 4 e . 

The inequality (2) is true for n = 1. Assuming it true for any particu
lar value of n we shall prove it for n+1. 

Dividing the inequality (2) by 2 we have 

||r(2-"*)/2 - 2-w-1:r(tf)|| 

< 2-<»+1>/2iK|MI)1/2( £ 2-*/^ + (1/2 - 2-"^)/4€. 

Replacing x by 2~nx in the inequality (1) we get 

II7X2-"-1*) - 2T(2-»*)/2 || < 2-<n+1»2k(\\x\\yi2 + 2e. 

On adding the last two inequalities we obtain 

II2X2-*-1*) - 2—*T(x)\\ 

< 2-<n+»!2k(\\x\\y'2( Ê 2r*A + (1 - 2—i).4e. 

This proves the induction. Therefore inequality (2) is true for all # 
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in E and for w = l, 2, 3, • • • . If we put a = &XXo2~i/2, we have 

| |r(2-»*) - 2- n r (*) | | < 2-»/2a(||*||)1/2 + 4e. 

Hence, if m and p are any positive integers, 

\\2-™T(2mx) - 2-m-*>T(2m+2>x)\\ 

= 2r"\\T(2*+*x/2p) - 2-PT(2m+*>x)\\ < 2~™/2a(||*||)1/2 + 22~™€, 

for all x in E. 
Therefore since £ is a complete space, the limit U(x) 

«lirrin^oo (T(2nx)/2n) exists for all x in E. 
To prove that U(x) is an isometry, let x and y be any two points 

of E. Divide the inequality 

| | | r (2»*) -r (2«y) | | - 2 - | | * -y | | |<« 

by 2n and take the limit as n—>oo. The result is \\U(x)-U(y)\\ 
= \\x—y\\. This completes the proof of Theorem 1. 

THEOREM 2. Let T satisfy the hypotheses of Theorem 1 and let 
u and x be any points of E such that ||«|| = 1 and (x, w)=0. Then 
| (T(x), U(u))\ g3€, where U(x) is defined as in the statement of 
Theorem 1. 

PROOF. For an arbitrary integer n put z~2nu. Let y denote an 
arbitrary point of the sphere Sn of radius 2n and center at z. Then 
II?—*|| = | H | and it follows that (y> u)~2~n~1(y, y). Since T is an 
e-isometry, \\T(y)~-T(z)\\=r](y, z) + \\T(z)\\ where |iy(y, z)\ <2e. 

The last equality may be written 

2(T(y), T(z)) = (T(y), T(y)) - 2„||r(z)|| - „». 

Dividing by 2 n + 1 and remembering that 3 = 2*% we obtain the 
equality 

(3) (T(y), 2-T(2-«)) - - J - [(r(y), T(y)) - ,«] - „ 
2n+i 

T(2ww) 

2n 

Now let # be any point of the hyperplane (x, u) = 0. 
Then y=x+ru, where r = 2 n - (2 2 w - | | # | | 2 ) 1 / 2 , is a point of the 

sphere Sn. For, 

Il y - *ll2 = (y, y) - 2(y, *) + (*, 2) 
= (*, x) + r2 — 2(*, z) — 2(M, 2) r + (z, z) 

= f 2 - 2 » + V + ||a;|h + ||z||2 = ||z||2. 
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Moreover, \\y—x\\ = r—>0 as n—»<*>. By Theorem 1, t^\imn^2^nT{2nu) 
exists and is a unit vector. Finally, for an arbitrary positive S and n 
sufficiently large, one can easily establish the following inequalities 
by means of equality (3) and the above remarks : 

(T(x), t) =S | (T(X), 

+ 

<l|r(*)|| 

r(2»«)\ i i / 

/rlv00, 

* ) \ 

T(2nu) 

2" 

T(y), \T(x) -

\t -
T(2nu) 

2» 
+ l + 2' 

?)' 

T(2nu) 

2» 

+ | |r(*)- r(y)||-
T(2*u) 

2n 
< è + 3c(l + 8). 

It follows that 

\(T(x),U(u))\ - | ( r ( * ) f 0 | S3«. 

THEOREM 3. Let T(x) satisfy again the hypotheses of Theorem 1, and 
let it take E into the whole of E. Then the transformation U(x) also 
takes E into the whole of E. 

PROOF. For each point z of E, let T~l(z) denote any point whose 
T-image is z. Then T~~l(z) is an c-isometry of E. By Theorem 1, the 
limit U*(z) ̂ lim^oo (r~1(2w2)/2w) exists, and U* is an isometry of E. 
Now clearly 

| |2*«- 2T(2»tf*(*))|| - II7Y2» 
T~\2nz) 

< 2n\ 
r~i(2w2) 

2» 

J - T(2"U*{z)) 

On dividing by 2n and letting w—»oo, we see, for each point z of £, 
that 2= UU*(z). Therefore U(E) =E. 

THEOREM 4. Let E be a complete abstract Euclidean vector space. If 
T(x) is an e-isometry which takes E into the whole of E such that 
7\0)=0, then the transformation U(x) =limn^oo (T(2nx)/2n) is an 
isometry of E into the whole of itself, and the inequality \\T(x) — U(x)\\ 
<10e is satisfied for all x in E. 

PROOF. For a given point XT&O let M denote the linear manifold 
orthogonal to x. By Theorem 3, U is an isometric transformation 
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which takes E into the whole of E. Hence U(M) is the linear mani
fold orthogonal to U(x). Let w be the projection of T(x) on U(M). 
If w = 0 put / = 0 . Otherwise put / = w/||ze;||. In either case (cf. Theo
rem 2), the inequality | (T(x), t)\ £3e is satisfied. Put v = (1/||*||) U(x). 
Then v is a unit vector orthogonal to t and is coplanar with T(x) and L 

Hence, by the pythagorean theorem we have the identity: 

(4) ||T(*) - U(x)\\* = (T(x), ty + [||*|| - (T(x), v)]\ 

Let zn = 2nx and if the projection wn of T(zn) on f/(M) is not zero, 
put /n = w„/ | |wj | . Otherwise we shall put tn = 0. In either case 
(tn, » )=0 , and \(T(zn), / n ) | g3e. If | |r(s»)| | <3e, it is obvious that 
| | r ( s n ) | H ( r ( s n ) , » ) | S 3 c . If | | r ( 2 n ) | | ^ 3 € , we have 0 ^ | | r ( s w ) | | 

-|(r(*), *)J =||r(^)||-(||r(^)H2-(^(^), W 2 ^ . 
Hence the inequality : 

(5) | |W|- | (r ( 2 n ) , . ) | |<4 E 

is satisfied, since ||s»|| < | | r (^ r l ) | |+6 . 
Two cases arise. If (T(x), v) ^ 0 , we put n = 0 in the inequality (5) 

and use the identity (4) to obtain the inequality | | r (x)— U(x)\\ <5e. 
If (T(x), v) < 0 , then for some integer w ^ O we must have (T(zm), v)<0 
and ((T(2zm), v)^0f since (U(x), v) is positive and U(x) =limn^00 

(T(zn)/2
n). Hence, by inequality (2), 

| |r(2«w) - T(zm)\\ ^ (T(2zm), v) - ( r (sw) , i) > 3||sM|| - 8e. 

But we know that \\T(2zm)~T(zm)\\ < | |aw | |+€. Therefore, 

||*|| ^ IWI < (9 /2>, and ||T(a?) - U(x)\\ < 2\\x\\ +e£ 10e. 

In order to prove the above theorem we had to assume that T(x) 
takes E into itself. We now show that the theorem is not always 
true for e-isometric transformations of one Euclidean space into part 
of another. Consider the transformation T(x) of the real axis into a 
subset of the plane defined as follows: the coordinates x, y of T(x) 
are (x, 0) for x :g 1, and (#, c • log x) for x > 1. I t is easy to verify that T 
will be an e-isometry if we choose c in such a way that e>c2 

max,>i((log * ) V ( 2 * - 2 ) ) . 
On the other hand, T(x) obviously cannot approximate an isometry 

in the sense of our theorem. 
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