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1. Introduction. In recent years the Kloosterman sum 

Mn) = Z ' exp (2rin(h + K)/k) 
h mod h 

has played an increasingly important role in the analytic theory of 
numbers. The dash ' beside the summation symbol indicates that the 
letter of summation runs only through a reduced residue system with 
respect to the modulus. The number h is defined as any solution of 
the congruence hh = l (mod k), and n denotes an arbitrary integer. 
It was shown by Salie1 almost fifteen years ago that Ak(n) may be 
evaluated explicitly when k is a power of a prime. Salié's result is 
given by the following theorem. 

THEOREM. Let k ~pa
t a è 2, (n, k) = 1, where p denotes an odd prime. 

Thefti 
(i) if ais even, 

Ah(n) = 2Jfe1/2cos(47r»/J!0; 

(ii) if a is odd, 

ƒ 2(n | £)fc1'2 cos (Airn/k) for p s 1 (mod 4), 
kW ~ \ - 2(n\ k)k"2 sin (4wn/k) for p s 3 (mod 4). 

The symbol (n\k) denotes, as is usual, the Legendre symbol. 
Salié's proof of his theorem is based upon induction. In the present 

note a direct proof is given. The method consists in introducing a 
transformation which expresses the Kloosterman sum in terms of 
Gauss sums and certain types of Ramanujan sums. 

2. Two lemmas. A Gauss sum may be defined by 
k-X 

Gh,k = X) exP (2Trihm2/k). 

We shall find it convenient to write G instead of Gi,&. The following 
lemma2 is classical. 

Received by the editors October 26, 1944. 
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2 See, for example, Edmund Landaü, Vorlesungen über Zahlentheorie, vol. 1, p. 153. 

373 



374 A. L. WHITEMAN [June 

LEMMA 1. If k isran odd integer and (h, k) = 1, then 

(1) Ghtk » (h\ k)G 

and 

(2) G = f((^D/2)2^i/2. 

We shall also need the following lemma. 

LEMMA 2. Le£ £ denote an odd prime; let n and a denote positive in
tegers. Then 

{
pec _ pa-l {f pa | n > 

- p«~l \i p«\n but #«-11 n, 

0 *ƒ p«-l\n{ct > 1). 

Furthermore, if ais odd, and if we put nx^n/p""1 when pa"1\n1 we have 

0 if p« | *, 

(4) Z ' (A | P«) exp (2«n*/*«) - t / A - / ' f " . 
h mod v« I V P l I » *«* ^ { ̂ , 

0 *ƒ ^«-1 \ n(a > 1). 

The first part of this lemma follows at once from a well known 
transformation formula8 for Ramanujan sums or may easily be proved 
directly. The second part of the lemma may be established in the 
following way: 

If pa\n, then 

£ ' (h\ p«) exp (2rinh/p*) = £ ' (*| p°) - 0. 
A mod p a ft mod pa 

If £«Jw but /J»-1 | n, then by (1) 

X ' (* I P") exp (2irinh/pa) = V ' (* | £) exp (lirinih/p) 
h mod p a h mod p a 

= (»i| P)Pa~lH (*| #) exp (2irih/p). 

But it is easy to show that4 

(5) Gi,p - E (*| *) exp (lirih/p). 

Hence, by (2), the lemma is established in this case. Finally, if pa~1\n, 
3 See, for example, Landau, loc. cit., vol. 1, bottom of p. 280. 
4 See, for example, Landau, loc. cit., vol. 1, p. 155. 
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Z ' (ÂI P°) exp (2Trinh/pa) 
h mod pa 

= Z ' (h + p\f) exp (2T»»(A + ^)/^«) 
h mod p a 

= exp {lirin/pa~l) Z ' (/* | ƒ>*) exp (2irinh/pa) = 0, 
& mod pa 

where we have noted that exp(2irin/pa-'1) 7* 1 since pa~l\n. This com
pletes the proof of Lemma 2. 

3. Proof of Salié's theorem. Let us first observe that (2) may be 
written in the form 1 = ( — 11 k)G2/k. Using (1) we may now transform 
the Kloosterman sum Ah{n) in the following manner. 

Ak(n) = ( - 11 k)G2/k ] £ ' exp ( 2 « ( - n2h - h)/k) 
Amod h 

= ( - 11 k)G/k £ ' exp (2x*(- M2A - *)/*) 
A mod h 

Jfc-1 

• X) (*| k)exp(2irihtn2/k) 
m«=0 

fc-1 

= ( - 11 *)G/* 2 ' Z (*| *) exp (2wih(m2 ~ n2- h2)/k) 
h mod A; m-=0 

&-1 

*= ( - 11 *)G/* E ' Z) (* I *) exp (2wih(m2 -n2 + 2mh)/k) 
h mod fc m«=0 

since ra + & runs through a complete residue system with respect to 
the modulus k whenever m does. Interchanging signs of summation 
we get 

jb-i 

Ah(n) = ( - 11 k)G/kJ2 exp (4wim/k) 

(6) mœ° 
• £ ' ( * ! * ) e xP (27rf(w2 - w2)V*. 

h mod & 

At this point we divide the discussion into two cases according as a 
is even or odd. For a even, we have 

Ak(n) = G/p° Z e x P {^im/p") Z ' exp (2W(w2 - n2)h/p«). 
m=0 A mod p a 

Referring to (3) we see that the last sum equals zero except when 
pa~l\m2 — n2. Now the solutions5 of the congruence rn2z=n2 (mod pa) 

5 See, for example, G. H. Hardy and E. M. Wright, An introduction to the theory of 
numbers, pp. 95-96. 
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are all given by m= ±n (mod pa), and the solutions of the congru
ence m2^n2 (mod p""1), m mod pa, where m2^rtè (mod pa), are 
ras ±n+qpa~1 (mod £«), 1 i&qièp — l. Hence, applying the first part 
of Lemma 2, we obtain 

• { ( * « -Ak(n) = G/pa< (pa - «̂"O exp (47rin/pa) 

p - i \ 

+ (£a — ^a~1) exp ( — 4win/pa) — ^a""xZ) exp (4TT*(±W + î^"""1)/^") f 

= 2G cos (ÏTti/k), 

which completes the proof of the theorem in the case in which a is 
even. 

We next consider the case which arises when a is odd. For this 
purpose we return to (6) and obtain 

P«-I 

Mn) = ( - 11 Pa)Gi%P«/p« V exp (4rim/pa) £ ' (h \ p«) 
m—O h mod pa 

exp (2iri(m2 — n2)h/pa). 

From (4) we see that the last sum is zero except when pa-~x\m2—n2 

but pa\m2 — n2. Furthermore, let us observe that the number »i, de
fined in Lemma 2, is here of the form ±2nq+q2pa~1. Hence, proceed
ing as we did in the case in which a is even, we get 

P-I 

Ak(n) = ( - 11 pa)G/p«Y< exp (4*i(± n + qpa"l)/pa) 

. {i(tr-»m\± 2nq\ p)pa~1/2} 

Î > — l 

•exp (4irin/pa) ]T) (2g| £) exp (4:iriq/p) 
« - 1 

P-I \ 
+ ( - » | P^Gi.pp*-1 exp ( - 4rin/pa) ]£ (2£1 £) exp (4viq/p) > 

« - 1 ; 

= (»| ^a)Gi,p«/^a{(~ 11 P^Lpp*-1 exp (4irin/pa) 

+ G\,PP«-1 exp ( - 4twin/pa)}. 

This completes the proof of the theorem in this case in view of 
Lemma 1. 

4. Concluding remarks. The reader may have wondered why the 
case a = l is excluded in Salié's theorem. The reason is that Salié's 
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method breaks down in this case as, indeed, does ours. For the sake 
of completeness we shall now show that when a = 1 our method leads 
merely to a transformation formula. 

For k =p, the last sum in (6) becomes a Gauss sum in view of (5). 
Thus we have by (1) and (2) 

p—i p—i 

Ap(n) = ( - 11 p)G/pY, exp (Ziritn/p) "£, (* I P) exp (2iri(m2 - n2)h/p) 

p-1 

= ( - 11 p)G2/p ] £ (m2 - n2\p) exp (4*rim/p) 

p-1 

= X) (m2 — An21 p) exp {lirim/p). 

Hence, we obtain the transformation formula 

p—i p— i 

X exp {2irin(h + h)/p) = X) (w2 - 4w21 £) exp (2irirn/p), 
h**l wi—0 

which may, of course, be established directly without much difficulty. 
Various sums related to the Kloosterman sum Ak(n) have been 

evaluated by Salie6 and Lehmer.7 The author has verified that the 
method of this paper may be employed to obtain new derivations of 
these results. 

WASHINGTON, D. C. 

6 Loc. cit. 
7 D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 

vol. 43 (1938) pp. 271-295. 


