
A REMARK ON METRIC BOOLEAN RINGS 

MALCOLM F. SMILEY 

The purpose of this note is to prove that if, on a ring B^ [a, 6, 
c, • • • ] with unity element 1, a real valued function ju(a) is defined 
satisfying 
(1) ix{a) > 0 for every a ^ O , 

(2) /i(a + b) + 2fi(ab) = M(a) + /*(&) 

for every a, &£U, then 5 is a metric Boolean ring1 [2, pp. 41 and 96]. 
This result is analogous to one of Glivenko's [3] which states that 
every metric lattice is modular [2, p. 42]. We discuss also the follow
ing modification of (1) : 

(3) fi(a) ^ 0 for every a £ B. 

The conditions (2) and (3) also lead, via identification, to a metric 
Boolean ring. 

THEOREM 1. Let B be a ring with unity element 1 on which is defined 
a real valued function fx(a) satisfying (1) and (2). Then B is a metric 
Boolean ring. 

The following lemma lists the steps in our proof of Theorem 1. 

LEMMA 1. For every a> & £ 5 , we have (i) ;u(a) = 0 if and only if a = 0, 
(ii) ix(ab)=tx{ba), (iii) M ( 1 + Ö ) = M ( 1 ) - M ( < 0 , (iv) ii(a*V) = v(db*\ (V) 

/x(a2)=ju(a), (vi) a+a = 0, (vii) a2 = a. 

PROOF, (i) Set & = 0 in (2) and use (1). (ii) This is clear by (2). 
(iii) Set b = 1 in (2). (iv) From (2) and (iii) we have 

n(a + b + 1) + 2y,{ab + a) = M(a) + ju(l) - v(b). 

Using (2) again gives 

fi(a + b + 1) + 2fx(ab) + 2»(a) - 4fx(a2b) = ti(a) + M(1) ~ M(*). 

Rearranging, we find that 

4M(a2ö) = M(« + b + 1) + 2|i(oJ) + p(a) + »(b) - M(l). 
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Interchanging a and b in this equation yields (iv). (v) Set b ~ 1 in (iv). 
(vi) Use (2) with a = 6, (v), and then (i). (vii) By (2), (vi), and (iii), 
we have 

M(a2 + a) = »(a(a + 1)) - (1/2) [/x(a) + M(a + 1) - M(1)] - 0. 

Now (i) and (vi) give (vii). 
The condition (vii) is Stone's definition of a Boolean ring [4]. That 

B is a metric Boolean ring is then immediate by (1) and (2). 
REMARK. The referee has pointed out that the method of proof of 

Lemma 1 actually yields the following theorem. 

THEOREM. Let B be a ring with unity element and let Rbe a ring with 
unity element 1 in which 2 = 1 + 1 is not a divisor of zero. If a function 
jx(a) is defined on B with values in R, which satisfies (2) and 

(1') if a ?* 0, then fx(a) -t 0; 

then B is a Boolean ring. 

We turn now to the conditions (2) and (3). 

THEOREM 2. Let B be a ring with unity element 1 on which is defined 
a real valued f unction fx(a) satisfying (2) and (3). Then the set Bo of all 
aÇzB for which ix(a) = 0isan ideal of B and the difference ring B — BQ 
is a metric Boolean ring. 

PROOF. First, if a, &GJ3o, then, by (2), we have 

li(a + b) + 2fi(ab) = M(<0 + /*(») = 0, 

and consequently, by (3), /x(a+6)=/x(a6)==0. Thus Bo is a subring 
of B. To show that Bo is an ideal, we first note that (ii) and (iii) of 
Lemma 1 are still valid. Now, using (2) and (iii) of Lemma 1, we ob
tain for aG-Bo, c£J3 , 

2/*(a(l + c)) = n(a) + M(1 + c) - M(1 + a + c), 

= /*(1) - ii{c) - /x(l) + /*(« + c), 

« - tx(c) + fx(a) + ix(c) - 2n(ac), 

== — 2fi(ac). 

Hence, by (3), ix(ac) = 0, and (ii) of Lemma 1 yields also pica) = 0. We 
conclude that Bo is an ideal of B. Note also that if aG-Bo, cG-B, we 
have 

n(a + c) = n(a) + ix{c) - 2n(ac) = n(c). 
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Thus the function fx(a) is constant on each element of 5— J50. The 
conclusion of Theorem 2 is now clear by Theorem 1. 

Note added in proof. The assumption of a unity element for B made 
in Theorems 1 and 2 m a y b e avoided as follows. Expandju(a+6+c) 
as in the proof of (iv) of Lemma 1 and interchange a and b to obtain 
(4): jj,(abac)=n(babc). Setting b = c——a then gives /z(a4)=ju(—a4). 
Putting b~a in (2) yields, via (3), M W ^ M ^ 2 ) » and hence also 
fj>( — a)^fi(a2). With J = —a in (2), we obtain M ( Ö O + M ( ~ a ) = 2/i( — a2). 
Thus we have 2/x(-"-a4)=ju(ö2)+M(--ö2)è2ju(a4) = 2/x(-a4), and con
sequently 2fjL(a4) = 2fx(a2) = 2iJL(—a2)=ix(a)+ix( — a)t from which (5): 
ju(a2)==^(a) ==/*(—a) follows. From (4) and (5) we obtain (6): 
n(aba2) =n(baba) =fx(ba) and also /x(#6) = M ( ^ 8 ) =At(#8) =/*(#). Now (2) 
gives ju(a+a2) = 0. To show that 5o of Theorem 2 is an ideal we have, 
for aEBo, b£B, fx(a2+ab)^fi(a2)+fi(ab)-2fx(azb)^-fi(ab)y by (5), 
(6), and (ii). 

On the other hand, the assumption of the unity element for B in 
the referee's theorem of our Remark is essential. For we may take R 
to be the ring of integers modulo an odd integer m, the elements and 
addition of B to be those of R, and define ab^O, fx(a)&za for every 
a, bÇ.B. All the hypotheses of the theorem of our Remark, except 
that B have a unity element, are valid, but B is no Boolean ring. The 
standard process of introducing a unity element [ l , p . 23] thus cannot 
preserve (1') and (2). 
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