2. C. J. Everett, Vector spaces over rings, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 312-316.

3. B. L. van der Waerden, Moderne Algebra, vol. 2, 1st ed., Berlin, 1931.

UNIVERSITY OF WISCONSIN

ON A CONSTRUCTION FOR DIVISION ALGEBRAS OF ORDER 16

R. D. SCHAFER

It is not known whether there exist division algebras of order 16 (or greater) over the real number field \Re . In discussing the implications of this question in algebra and topology, A. A. Albert told the author that the well known Cayley-Dickson process¹ does not yield a division algebra of order 16 over \Re and suggested a modification of that process which might. It is the purpose of this note to show that, while Albert's construction can in no instance yield such an algebra over \Re , it does yield division algebras of order 16 over other fields, in particular the rational number field R.

Initially consider an arbitrary field F. Let C be a Cayley-Dickson division algebra of order 8 over F. Define² an algebra of order 16 over F with elements c=a+vb, z=x+vy (a, b, x, y in C) and with multiplication given by

(1)
$$cz = (a + vb)(x + vy) = (ax + g \cdot ybS) + v(aS \cdot y + xb)$$

where S is the involution $x \rightleftharpoons xS = t(x) - x$ of C and g is some fixed element of C. The Cayley-Dickson process is of course the instance $g = \gamma$ in F.

For A to be a division algebra over F the right multiplication¹ R_z must be nonsingular for all $z \neq 0$ in A. Now

$$R_{s} = \begin{pmatrix} R_{x} & SR_{y} \\ SL_{y}L_{g} & L_{x} \end{pmatrix}$$

532

Received by the editors January 19, 1945, and, in revised form, March 19, 1945. ¹ See [1] and [2] for background and notations. Numbers in brackets refer to the references cited at the end of the paper.

² We should remark that this modification of the Cayley-Dickson process does yield non-alternative division algebras of orders 4 and 8 over \Re when applied to the algebras of complex numbers and real quaternions instead of to C. See R. H. Bruck, Some results in the theory of linear non-associative algebras, Trans. Amer. Math. Soc. vol. 56 (1944) pp. 141-199, Theorem 16C, Corollary 1, for a generalization.

1945] A CONSTRUCTION FOR DIVISION ALGEBRAS OF ORDER 16

and, if $g \neq 0$, R_s is nonsingular in case either x = 0, $y \neq 0$ or $x \neq 0$, y = 0. Therefore let $x \neq 0$, $y \neq 0$. Then

$$|R_{s}| = \begin{vmatrix} R_{z} & SR_{y} \\ SL_{y}L_{g} & L_{z} \end{vmatrix} = \begin{vmatrix} R_{x} & 0 \\ SL_{y}L_{g} & L_{z} - SL_{y}L_{g} \\ R_{z} - SL_{y}L_{g} & L_{z} - SL_{y}L_{g}R_{z}^{-1}SR_{y} \end{vmatrix}$$
$$= |R_{z}| \cdot \left| L_{z} - \frac{1}{n(x)} R_{yS}R_{gS}R_{z}^{-1}R_{xy}L_{z} \right|$$

by a lemma of Moufang.³ Hence $|R_z| = |L_x| \cdot |n(x)R_yR_g|^{-1} \cdot |n(x)R_xR_gR_y - n(g)n(y)R_{xy}|$. That is, A is a division algebra over F if and only if the transformation

(2)
$$n(x)R_xR_gR_y - n(g)n(y)R_{xy}$$

is nonsingular for all $x, y \neq 0$ in C.

Now let $F = \Re$, the field of real numbers. The non-scalar⁴ element g generates $B \subset Q = B + uB$, Q a real quaternion algebra, $u^2 = -n(u)$, $gu = u \cdot gS$. Multiplication in the Cayley algebra C = Q + wQ is defined by the right multiplication

$$R_{q+wr} = R_{(q,r)} = \begin{pmatrix} R_q & SR_r \\ -SL_r & L_q \end{pmatrix}$$

for q, r in Q and S the involution $q \rightleftharpoons qS = t(q) - q$ of Q. Specialize two elements x, y of C in the following manner. Let $y = u \in Q$; then $y^2 = -n(y)$, $gy = y \cdot gS$. Let $x \in wQ$ and $n(x) = \zeta n(y)$ where $\zeta > 0$, $\zeta^2 = n(g)$. Then $xy = (0, x)R_{(y,0)} = (0, yx)$ and

$$\begin{vmatrix} n(x)R_{x}R_{g}R_{y} - n(g)n(y)R_{xy} \end{vmatrix}$$

$$= \begin{vmatrix} n(x) \begin{pmatrix} 0 & SR_{x} \\ -SL_{x} & 0 \end{pmatrix} \begin{pmatrix} R_{g} & 0 \\ 0 & L_{g} \end{pmatrix} \begin{pmatrix} R_{y} & 0 \\ 0 & L_{y} \end{pmatrix} - n(g)n(y) \begin{pmatrix} 0 & SR_{yx} \\ -SL_{yx} & 0 \end{pmatrix} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & n(x)SR_{x}L_{yg} - n(g)n(y)SR_{yx} \end{vmatrix}$$

$$= \begin{vmatrix} n(g)n(y)SL_{yx} - n(x)SL_{x}R_{gy} & 0 \end{vmatrix}$$

$$= \begin{vmatrix} R_{x}L_{x} \end{vmatrix} \cdot \begin{vmatrix} n(x)L_{yg} - n(g)n(y)R_{y} \end{vmatrix} \cdot \begin{vmatrix} n(g)n(y)L_{y} - n(x)R_{gy} \end{vmatrix}$$

533

⁸ [2, Lemma 1].

⁴ The Cayley-Dickson process (the case $g = \gamma$, a scalar) may be eliminated by this argument too. If $\gamma \ge 0$, let $y = \beta$ in \Re , $n(x) = \gamma \beta^2$; if $\gamma < 0$, let y = i, f = j, $n(x) = -\gamma$ in what follows.

R. D. SCHAFER

since x, y, g are quaternions. That is, $|n(x)L_{yg} - n(g)n(y)R_y| = 0$ would imply that transformation (2) is singular.

Choose $f = \zeta y + yg$. Then $f\{n(x)L_{yg} - n(g)n(y)R_y\} = n(x)\zeta ygy + n(x)ygyg - n(g)n(y)\zeta y^2 - n(g)n(y)ygy = n(x)y^2gS \cdot g - n(g)n(x)y^2 = 0$. Hence (2) is singular and A is not a division algebra over \Re .

The easy generalization that there is no choice of g to make A a division algebra of order 16 over any field F should not be made. For the singularity of transformation (2) implies that there exists an element $h \neq 0$ in C such that $n(x) \{ (hx)g \} y = n(g)n(y)h(xy)$. Since the norm of a product is the product of the norms in an alternative division algebra,⁵

$$\overline{n(x)}^{3}n(h)n(g)n(y) = \overline{n(g)}^{2}\overline{n(y)}^{3}n(h)n(x) \text{ or } \overline{n(x)}^{2} = n(g)\overline{n(y)}^{2}$$

in case $g \neq 0$. That is, the transformation (2) cannot be singular (and A is therefore a division algebra) for any choice of g in C such that n(g) is not the square of an element in F.

For example, let F be in particular the field R of rational numbers, and g=1+i so that n(g)=2. Then the algebra A with multiplication defined by (1) is a division algebra of order 16 over R.

References

1. A. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy, Ann. of Math. (2) vol. 43 (1942) pp. 685-708.

2. R. D. Schafer, Alternative algebras over an arbitrary field, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 549-555.

SAN FRANCISCO, CALIF.

[•] [2, Lemma 2].

534