SOME REMARKS ON EULER'S ϕ FUNCTION AND SOME RELATED PROBLEMS

PAUL ERDÖS

The function $\phi(n)$ is defined to be the number of integers relatively prime to n, and $\phi(n) = n \cdot \prod_{p|n} (1-p^{-1})$.

In a previous paper¹ I proved the following results:

(1) The number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is $o(n \lfloor \log n \rfloor^{\epsilon-1})$ for every $\epsilon > 0$.

(2) There exist infinitely many integers $m \leq n$ such that the equation $\phi(x) = m$ has more than m° solutions for some c > 0.

In the present note we are going to prove that the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is greater than $cn(\log n)^{-1}\log\log n$.

By the same method we could prove that the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is greater than $n(\log n)^{-1}(\log \log n)^k$ for every k. The proof of the sharper result follows the same lines, but is much more complicated. If we denote by f(n) the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution we have the inequalities

$$n(\log n)^{-1}(\log \log n)^k < f(n) < n(\log n)^{\epsilon-1}$$

By more complicated arguments the upper and lower limits could be improved, but to determine the exact order of f(n) seems difficult.

Also Turán and I proved some time ago that the number of integers $m \leq n$ for which $\phi(m) \leq n$ is cn + o(n). We shall give this proof, and also discuss some related questions:

LEMMA 1. Let $a < \epsilon$, b < n, $a \neq b$, $\epsilon = (\log \log n)^{-100}$. Then the number of solutions $N_n(a, b)$ of

(1)
$$(p-1)a = (q-1)b, \quad p \leq na^{-1}, \quad q \leq nb^{-1},$$

p, q primes, does not exceed

(2)
$$\frac{(a, b)}{ab} \frac{n}{(\log n)^2} (\log \log n)^{s_0}$$
.

PROOF. Put (a, b) = d. Then we have $p \equiv 1 \mod bd^{-1}$. Also $(p-1)ab^{-1} + 1 = q$ is a prime. We can assume that both p and q in (1) are greater

Received by the editors February 9, 1945.

¹ On the normal number of prime factors of p-1, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 205-213.

than $n^{1/2}$, for the exceptional values of p and q give only $2n^{1/2}$ solutions of (1). Let $r < n^{\delta}$, where $\delta = (\log \log n)^{-10}$, be a prime. If p is a solution of (1) it must satisfy the following conditions

$$p \equiv 1 \mod bd^{-1}, \qquad p < na^{-1},$$

$$p \neq 0 \mod r, \qquad p \neq (-ba^{-1} + 1) \mod r.$$

If r is not a divisor of a(a-b) the excluded two residues are different. Thus we obtain by Brun's argument²

$$N_n(a, b) < 2n^{1/2} + c_1 n d(ab)^{-1} \prod_{r \nmid a(a-b)} (1 - 2r^{-1}),$$

where r runs through the primes less than n^{δ} .

Now it is well known that³

$$\prod_{r \leq x} (1 - 2r^{-1}) < c_2(\log x)^{-2}, \qquad \prod_{r \mid x} (1 - 2r^{-1}) > c_3(\log \log x)^{-2}.$$

Hence

$$N_n(a, b) < 2n^{1/2} + c_4 n d(ab)^{-1} (\log \log n)^{22} (\log n)^{-2} < n d(ab)^{-1} (\log \log n)^{30} (\log n)^{-2},$$

which completes the proof.

LEMMA 2. $\sum (p-1)^{-1} < (\log \log n)^{20} d^{-1}$ if this sum is extended over all $p < n^{\epsilon}$ for which $p \equiv 1 \mod d$.

Clearly (summing over the indicated p)

$$\sum p^{-1} \leq d^{-1} \sum' x^{-1},$$

where the dash indicates that the summation is extended over the x for which $x < nd^{-1}$ and xd+1 is a prime. Let $y < nd^{-1}$; first we estimate the number of these $x \le y \le n$. Let $r < y^{\delta}$ ($\delta = (\log \log n)^{-10}$) be a prime; if (r, d) = 1 then $x \ne -d^{-1} \mod r$. Brun's method⁴ gives that the number of these $x \le y$ is less than

$$cy \prod (1 - r^{-1}) < cy(\log y)^{-1}(\log \log y)^{10} \log \log d$$
,

where the product is extended over the r which satisfy $r < y^{\delta}$, (r, d) = 1. Thus a simple argument gives

$$\sum' x^{-1} < c \sum_{z < n} (\log \log z)^{10} (\log \log d) (z \log z)^{-1} < (\log \log n)^{20},$$

which proves the lemma.

² Landau, Vorlesungen über Zahlentheorie, vol. 1, p. 71.

⁸ Hardy-Wright, Theory of numbers.

⁴ Landau, ibid.

LEMMA 3. The number A(n) of integers m of the form m = pq, where (3) $pq \leq n$,

$$p, q \text{ primes}, p > q, q < n^{\epsilon}, equals$$

$$n(\log \log n)(\log n)^{-1} + o([n(\log \log n)(\log n)^{-1}]) = \pi_2(n) + o(\pi_2(n)).$$

REMARK. Thus the number of integers satisfying (3) is asymptotically equal to the number $\pi_2(n)$ of integers which are less than n and have 2 prime factors.⁵

The number of integers satisfying (3) is clearly not less than

$$\sum (\pi (nq^{-1}) - n^{\epsilon}) = \sum nq^{-1} (\log (nq^{-1}))^{-1} - n^{2\epsilon} + \sum o(nq^{-1} [\log (nq^{-1})]^{-1}) = n(\log \log n) (\log n)^{-1} + o(n(\log \log n) (\log n)^{-1})$$

(here $\pi(n)$ denotes the number of primes, and the sums are taken over $q < n^{\epsilon}$), since $\sum q^{-1} = \log_2 n + \log \epsilon + o(1)$ and $\log (nq^{-1})$ is asymptotic to log *n* for $q < n^{\epsilon}$. (The sum $\sum q^{-1}$ is for $q < n^{\epsilon}$.)

THEOREM. The number f(n) of different integers m of the form $m = \phi(pr)$ where p, r are primes and $pr \leq n$ equals

 $n(\log \log n)(\log n)^{-1} + o(n(\log \log n)(\log n)^{-1}) = \pi_2(n) + o(\pi_2(n)).$

Denote by B(n) the number of solutions of (p-1)(r-1) = (q-1)(s-1), where p, q, r, s are primes, with pq, rs < n and $s, r < n^{\epsilon}$. Clearly

$$f(n) \geq A(n) - B(n).$$

We have by Lemma 1 (the following sum being for $r, s < n^{\epsilon}$)

$$B(n) = \sum N_n(r-1, s-1)$$

< $n(\log \log n)^{30}(\log n)^{-1} \sum (r-1, s-1)(r-1)^{-1}(s-1)^{-1}$

Put (r-1, s-1) = d. Then

$$B_n < n(\log n)^{-2} (\log \log n)^{30} \sum \sum d(q-1)^{-1} (s-1)^{-1},$$

where the first sum is for $d < n^{\epsilon}$ and the second for $r \equiv s \equiv 1 \mod d$, with $r, s < n^{\epsilon}$. By Lemma 2 we have, summing over the same r and s,

$$\sum_{r=1}^{\infty} (r-1)^{-1} (s-1)^{-1} < (\log \log n)^{40} d^{-2}.$$

^k Denote by $\pi_k(n)$ the number of integers having k different prime factors. Landau proves (*Verteilung der Primzahlen*, vol. 1, pp. 208-213) that $\pi_k(n) \sim (n/\log n)(\log \log n)^{k-1}/(k-1)!$. The same asymptotic formula holds if $\pi_k(n)$ denotes the number of integers having k prime factors, multiple factors counted multiply. (Landau, ibid.)

Hence

$$B(n) = c \epsilon n (\log n)^{-1} (\log \log n)^{70} = o(n (\log n)^{-1}).$$

Hence by Lemma 3

$$f(n) \ge n(\log \log n)(\log n)^{-1} - o(n(\log n)^{-1}),$$

which completes the proof. (Clearly $f(n) < \pi_2(n) < (1+\epsilon)n(\log \log n) \cdot (\log n)^{-1}$.) Our result shows that the number of different integers not greater than n of the form (p-1)(q-1) is asymptotic to the total number of integers not greater than n of the form (p-1)(q-1). Nevertheless there exist integers m such that (p-1)(q-1)=m has arbitrarily many solutions.⁶

By similar but more complicated methods we can prove:

The number of integers not greater than n of the form

$$\prod_{i=1}^{k} (p_i - 1) = \phi(p_1, \cdots, p_k) \qquad (p_i \text{ primes})$$

is greater than

$$cn(\log \log n)^{k-1}[(k-1)! \log n]^{-1} = c\pi_k(n) + o(\pi_k(n))$$

 $(\pi_k(n) \text{ denotes the number of integers not greater than } n \text{ having exactly } k \text{ prime factors})$. The constant c depends on k and tends to 0 as $k \to \infty$. For $k \ge 3$, c < 1. We omit the proof of these results.

THEOREM. The number M(n) of integers for which $\phi(m) \leq n$ equals cn + o(n).

Denote by f(x) the density of integers for which $m/\phi(m) \ge x$. It is well known that this density exists.⁷ We are going to prove that

$$c=1+\int_1^\infty f(x)dx.$$

First we have to show that $\int_{1}^{\infty} f(x) dx$ exists. Since f(x) is nondecreasing it will suffice to show that for large r, $f(r) < cr^{-2}$. We have

$$\sum_{m=1}^{n} (m/\phi(m))^2 = \sum_{m=1}^{n} \prod_{p \mid m} (1 + p^{-1} + \cdots)^2 < \sum_{m=1}^{n} \prod_{p \mid m} (1 + 5p^{-1})$$
$$= \sum_{m=1}^{n} \sum_{d \mid m} \mu(d) d^{-1} 5^{\nu(d)} < n \sum_{d=1}^{\infty} 5d^{-2} < cn.$$

⁶ P. Erdös, On the totient of the product of two primes, Quart. J. Math. Oxford Ser. vol. 7 (1936) pp. 227-229.

1945]

⁷ Schönberg, Math. Zeit. vol. 28 (1928) pp. 171-199.

Hence

$$\lim n^{-1} \sum_{m=1}^{n} (m/\phi(m))^{2} < c$$

and this shows $f(r) < cr^{-2}$.

Let k be a large number. Consider the integers m satisfying $nuk^{-1} \leq m < n(u+1)k^{-1}$, $u \geq k$. We clearly have

$$\limsup M(n)/n < 1 + k^{-1} \sum_{u=k}^{\infty} f(uk^{-1}),$$
$$\liminf M(n)/n > 1 + k^{-1} \sum_{u=k}^{\infty} f((u+1)k^{-1}).$$

(If $uk^{-1} \le m \le (u+1)k^{-1}$ and $m/\phi(m) \ge (u+1)k^{-1}$, $\phi(m) < n$ and if $m/\phi(m) < uk^{-1}$, $\phi(m) > n$.) If $k \to \infty$ both sums tend to $\int_1^{\infty} f(x) dx$, thus

$$\lim M(n)/n = 1 + \int_1^\infty f(x) dx$$

which completes the proof.

Let $\sigma(m)$ be the sum of the divisors of m. By the same methods as used before we can prove the following results:

(1) The number of integers *m* for which $\sigma(m) \leq n$ is cn + o(n).

(2) Denote by g(m) the number of integers $m \le n$ for which $\sigma(x) = m$ is solvable. Then $n(\log n)^{-1}(\log \log n)^k < g(n) < n(\log n)^{-1}(\log n)^{\epsilon}$.

It seems likely that there exist integers m such that the equation $\phi(x) = m$ has more than $m^{1-\epsilon}$ solutions, and also that there exist, for every k, consecutive integers n, n+1, \cdots , n+k-1 such that $\phi(n) = \phi(n+1) \cdots \phi(n+k-1)$.⁸ We can make analogous conjectures for $\sigma(n)$. It also would seem likely that there are infinitely many pairs of integers x and y with $\sigma(x) = \sigma(y) = x+y$, that is, there are infinitely many friendly numbers, but these conjectures seem intractable at present.

One final remark: Let $\psi(n) \ge 0$ be a multiplicative function which has a distribution function.⁹ f(x) denotes the density of integers with $\psi(n) \ge x$. Denote by M(n) the number of integers for which $n\psi(n) \le n$. Then $\lim M(n)/n$ always exists since it can be shown that $\int_0^{\infty} f(x) dx$ always exists. The proof is the same as in the case of $\phi(n)$.

544

UNIVERSITY OF MICHIGAN

^{*} It is known that there exists a number n < 10000 such that $\phi(n) = \phi(n+1) = \phi(n+2)$, but I do not remember n and cannot trace the reference.

[•] The necessary and sufficient condition for the existence of the distribution function is given by Erdös-Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721.