
ON SAINT VENANT'S PRINCIPLE 

R. v . MISES 

The so-called principle of statically equivalent loads, due to Saint 
Venant, has been referred to for the last fifty years in almost all texts 
on elasticity. The statements in different books vary only slightly. 
Let us quote A. E. H. Love's Treatise on the mathematical theory of 
elasticity (4th éd., p. 132) : "According to this principle the strains that 
are produced in a body by the application, to a small part of its sur
face, of a system of forces statically equivalent to zero force and zero 
couple, are of negligible magnitude at distances which are large com
pared with the linear dimensions of the part." In this form the state
ment is not very clear. Forces applied to a body at rest must be in 
equilibrium in any case. It would not make sense to speak of adding 
or subtracting a system of forces that is not an equilibrium system. 
What is meant may be correctly expressed in this way : If the forces 
acting upon a body are restricted to several small parts of the sur
face, each included in a sphere of radius e, then the strains and stresses 
produced in the interior of the body at a finite distance from all those 
parts are smaller in order of magnitude when the forces for each 
single part are in equilibrium than when they are not. If this state
ment is true, it must be capable of a mathematical proof, that is, it 
must be a consequence of the fundamental differential equations of 
elasticity theory. But no attempt is made in the usual textbooks to 
supply a demonstration. Most texts give Boussinesq as a reference 
for the proof. What Boussinesq really dealt with was the infinite body 
filling the half space z>0 and subjected to normal forces at its bound
ary 0 = 0. If the forces are applied to points £, 77, 0 where £2+rç22§€2, 
Boussinesq proved that the stress at a point x, y, z is of order c when 
the sum of forces is zero and of order e2 when their moments also 
vanish. It will be shown in the following that this is not the case, in 
general, if tangential components of the forces at 2 = 0 are admitted. 
Moreover we shall consider a body of finite dimensions and see that 
there too Saint Venant's principle in its traditional form does not hold 
true. The main result, from a practical point of view, is that Saint 
Venant's principle can be applied if all forces involved are parallel 
and not tangential to the surface of the body, but not under more 
general conditions. No objection is raised in the present paper against 
using the principle in the case of bodies with one or two infinitesimal 
dimensions, like thin plates, shells or beams, although a proof of its 
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validity in these cases or even a precise statement has not yet been 
given. 

1. The infinite half space. If the force X, F, Z is applied in the 
origin to the body z > 0 , the displacements «, v, w at a point x> y, z 
can be expressed, as it follows from Boussin esq's results,1 in the fol
lowing way. We denote by U and V the harmonic functions 

xX + yY 
(1) U — , F=Zlog(r + s) 

r + z 
where r2~x2+y2+z2, by K the value 1 —2a- where a is Poisson's ratio, 
and by JJ, the shear modulus. Then the displacements are given by 

2 / d\dU ( d\dV 
Airpu s* — X + [K — 1 + z — ) 1 K + z — ) ; 

r \ dz/ dx \ dz) dx 
2 / d\dU ( d\dV 

(2) 4 T M * « — F + I J K - l + « — ) [K + Z — ) , 
r \ dz) dy \ dz) dy 
2 ( d\dU ( d\dV 

4xju w = — Z + l — K + Z — J ( 1 — K + z — J • 
r \ dz) dz \ dz) dz 

I t can easily be shown that these values satisfy the differential equa
tions of elasticity theory : 

l dd l do i do 
AM H = 0, Av -\ = 0, Aw -\ = 

K dx K dy K dz 
(3) 

du dv dw 
e*n—-\ 1 

dx dy dz 
From (2) we derive by differentiation 

K xX + yY + zZ 
(4) e ' • 

2*n fs 

= 0; 

On the other hand, it follows from (2) if the strain-stress relations 
are introduced that the stress vector for an element parallel to the 
x-y-plane is directed toward the origin and has the magnitude 

1 Boussinesq, J., Applications des potentiels à Vétude de l'équilibre et du mouvement 
des solides élastiques, Paris, 1885. A. E. H. Love, Treatise on the mathematical theory of 
elasticity, 4th éd., Cambridge, 1934, p. 191, gives only the results for a force acting 
normal to the boundary. The complete expressions can be derived from the formulae 
developed by E. Trefftz in: Frank-Mises, Differential- und Integralgleichungen der 
Mechanik undPhysik, 2nd éd., vol. 2, Braunschweig, 1935 (Reprint, New York, 1944), 
p. 303. 
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3z xX + yY + zZ 

Thus the stress is zero in all points 2 = 0, x2+y2^0 and across each 
plane 2 = cons t .>0 the stresses are equivalent to a single force —X, 
— F, —Z passing through the origin. 

The mean normal stress is given by 

1 3 - / c K- 3 xX + yY + zZ 
(6) a = - (crx + <ry + <TZ) = ——fxd = — 

3 3K 6W r8 

If the force attacks at £, 77, 0 instead of a t the origin, the same 
formulas can be used, where only x, y have to be replaced by x — £, 
y-~V, and r2 by (x — £)2-\-(y — rj)2-\-z2. Developing with respect to £, 
rj we obtain for the mean normal stress due to a system of forces 
Xvy YV} Zv attacking at points £,, rjvi 0 (*> = 1, 2, 3, • • • ) : 

/c — 3 

(7) + — [(3s2 - r2) 2 £,X, + 3xyT, &F, 
r2 

+ 3*2:22 ^ + 3 x ^ X ^ > 

+ (3y' - '2) E * 1 % + 3 y « E ^ > ] + • • • 

and similar expressions for other stress values. 
If all £„ and T]V are of the order of magnitude €, we can conclude : 

The stresses (and strains) in a point x, y, z are of the order c, if the 
sums of force components 22^"> 22 V̂» 22^" a r e zero; they are of the 
order e2, if and only if the six linear moments 22£"^> 22&^> 2 2 ^ ^ " 
a n d 221/^"» 2277"F„, 2277"-2*" a l s o vanish. The case of a system in equi
librium, that is, YL^v—^^vZv^2,{^vYv'-7]vZv) = 0, is, in general, in 
no way distinguished. Only if all forces are parallel to each other, 
either normal to the boundary surface or inclined under an angle 
different from zero, the three equilibrium conditions entail the other 
three conditions. In general, the order of magnitude of the inner 
strains is reduced to e2 if and only if the external forces acting upon a 
small part of the surface are such as to remain in equilibrium when 
turned through an arbitrary angle (astatic equilibrium). 

- 0 

(a) (b) « (c) (d) 

finite stress stress of order of magnitude e stress of order ê 
FIG. 1 
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The results are illustrated in the four simple examples of Fig. 1. 
All forces are here parallel to the ^-direction ( F = Z = 0). In the case 
(a) we have a single force which provides a finite stress value accord
ing to the first term of (7). In both cases (b) and (c) the sum of forces 
is zero, but in (b) the sum of T)VXV and in (c) the sum of £„X„ is differ
ent from zero. I t follows from (7) that in either case the stress has the 
order of magnitude e. If the Saint Venant principle were correct, the 
stress should be small of higher order in the case (c) where all equi
librium conditions are fulfilled. In fact, in the case (d) only where the 
three forces form a system in astatic equilibrium with all linear mo
ments zero the stress has the order of magnitude e2. 

2. Circular disk. It may be doubted whether the infinite half space 
gives an adequate picture of what happens in the case of a finite body. 
Here one cannot speak of applying a single force to the body since the 
forces as a whole have to form an equilibrium system. I t will be suffi
cient, however, for the present purpose, to analyze one particular 
shape of finite boundary. 

Let us consider the two-dimensional stress distribution in a circular 
disk of radius R subjected to external forces Fi, F2, • • • , F n which 

FIG. 2 

attack at points Pi , P2 , • • •, P n of the circumference. The stresses in a 
point P are determined by Airy's stress function 5 (P) . If (Fig. 2) r is 
the distance of P from the center C, rv the distance between P and P„, 
<t>P the angle of Fv with CPvy and 8P the angle of Fv with PPvy the stress 
function is given by2 

1 n / r2 \ 
(8) S(P) » — ]C M r,09 sin 09 cos 4>, ). 

T „»i \ 4R / 
8 Cf. Love, loc. cit. p. 217. H. Hertz, Gesammelte Werke, vol. 1, p. 283. 
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The stress components with respect to an x-^-coordinate system 
can be expressed as follows, if ft designates the angle of F , with the 
#-axis : 

1 _ f 2 cos ó , l 
<r, = — 23 F* — cos ft cos2 (ft - j8,) - — — , 

* Lr, 2R J 

1 x_^ f 2 cos ó , l 
<rtf » — 23 *V — cos ft sin2 (ft - ft) — - , 

7T Lr , 2JR J 
1 _ 2 

r — 2^ F, — cos ft cos (ft — ft) sin (ft — ft). 
v r, 

I t can easily be shown that S(P) fulfills the differential equation 
AAS = 0 and that the stresses on the boundary r = R are zero, except 
in the points P,(r , = 0). In these points the stresses become infinite 
and combine so as to balance F, . 

In the center of the circle we have r, = i? and ft = # , and introducing 
a , = f t —<£„ the polar angle of P „ we find for the stress components 
in C 

<rx = — 23 F» cos (ft - «0(1/2 + cos 2a,), 
TR 

(10) <rv =* X) J?, cos (ft - a,) ( 1 / 2 - cos 2a,), 
7ri£ 

r = 23 F , cos (ft — a,) sin 2a,. 

Let us now assume that there are two groups of forces F , and F, ' , 
forming angles ft and ft' with the #-axis. The points of attack P , of 
the first group may lie close to a point P 0 with polar angle a0 and the 
points Pi of the second group near to PÓ with polar angle ai so as to 
have av = ao+t;v1 ai =ao + £,' (£, £' small). If we develop the expres
sion for <xz with respect to £ and £', we find 

TTR(TX = (1/2 + cos 2a0) 23 ^ cos (ft - a0) 

+ (1/2 + cos 2a0') ] £ F,' cos (ft - a0') 

— 2 sin 2a0 23 &»%» cos (ft — ao) 

- 2 sin 2a„' 23 W cos (ft - a„') 

+ (1/2 + cos 2a0) 23 F& sin (ft - a0) 

+ (1/2 + cos 2a0') 23 WE/ sin (ft - a0') + • • • . 

The first two terms vanish if in each group the sum of forces is zero, 
since ft—«o and ft' — ai are the angles the forces form with CPo and 

(ID 
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CPi respectively. In this case, therefore, the highest terms in the ex
pression for <TX are of the order £, £'. 

If the sums of moments in each group are also zero, we have 

Z PpR sin (ft - av) « RJ2 F, sin (ft - «0 - fc) - 0, 

E F / J R sin 08/ - al) - * y ; F ; sin (ft' - ai - tf) - 0. 

If these expressions are developed with respect to £ and £', it is seen 
that with the resultant forces and moments vanishing the sums 

E F& cos (ft - av) and £ F,' tf cos (ft' - a! ) 

are zero except for quantities of higher order. In this case the third 
and fourth terms in (11) vanish, but the fifth and sixth still supply a 
quantity of the order of magnitude £, £'. Only if the two additional 
conditions are fulfilled that 

£ FA sin (ft - «o) and £ FI Hi sin (ft' - ai ) 

vanish, except for terms of higher order, the development of ax will 
start with terms of the order £2, ££', £'2. 

Again the results may be illustrated on four simple examples shown 
in Fig. 3. In the case (a) the two single forces of magnitude F produce 

(a) finite stress (b) and (c) stress of order of magnitude « 

(d) stress of order ê 
FIG. 3 
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in the center a finite normal stress <rx~3F/TrR according to (11). In 
(b) we have two groups of parallel forces with a0 = 45°, ai =135°. 
If the angular distance of the two neighboring points of application 
is called e, one has £i = £i = 0 , & = - € , £2' = e and with j8i=j32' =180°, 
j32=j8/ = 0 , equation (11) supplies <rx~5Fe/21,2TrR. In the case (c) the 
two forces attacking in the points ai = 90° —€, a2 = 90° + € form an 
equilibrium system. Equation (11) gives here the value Vx — Fe/irR 
which is of the same order as in (b). Were Saint Venant's principle 
correct, the stresses in (c) should be small of a higher order. In fact, 
this is the case with the three forces in example (d) only which form 
an astatic system (up to terms of higher order). All terms written 
down on the right-hand side of (11) vanish in the case (d). 

3. Conclusions. In order to obtain a precise and sufficiently general 
statement let us consider a finite simply connected body, supported at 
an adequate number of distinct surface points Si, 52, 53, • • • . Let 
P i be a point of the surface where the load Fi is applied and P 
an inner point of the body at finite distances from Pi and from 
•Si, S2, 5s, • • • . Let, finally, a be some well defined strain or stress 
quantity in P , for instance, the normal stress in ^-direction, or any 
component of the distortion. Then, with constant Fi, this a will be a 
function of the coordinates of P i . If P i is a regular surface point 
(tangential plane, finite curvature) the function will have finite de
rivatives. Tha t means, if P i moves through a small distance e the 
change in a will be of the order of magnitude €. Consequently, two 
equal and opposite forces attacking at points of distance e will pro
duce a (7-value of the order €. On the other hand, the load Fi can be 
replaced by several loads that have the vector sum Fi, all attacking 
a t Pi . Each of them can be shifted to the neighborhood and then re
versed. The system of these reversed forces combined with the origi
nal Fi will still produce a cr-value of order e. Thus our first statement 
reads : 

(a) If a system of loads on an adequately supported body, all applied 
at surface points within a sphere of diameter e, have the vector sum zero, 
they produce in an inner point P of the body a strain or stress value <r of 
the order of magnitude €. 

To this statement we add the results reached in the preceding sec
tions by way of direct computation for two particular cases, the infi
nite half space and the circular disk. The general proof following the 
same lines can be given without difficulty. 

(b) If the loads, in addition to having the vector sum zero, fulfill three 
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further conditions so as to form an equilibrium system within the sphere 
of diameter e, the a-value produced in P will, in general, still be of the 
order of magnitude €. 

(c) If the loads, in addition to being an equilibrium system, satisfy 
three more conditions so as to form a system in astatic equilibrium, then 
the cr-value produced in P will be of the order of magnitude e2 or smaller. 
In particular, if loads applied to a small area are parallel to each other 
and not tangential to the surface and if they form an equilibrium system, 
they are also in astatic equilibrium and thus lead to a a of the order e2. 

In this whole argument the loads as well as the supporting reactions 
were supposed to be concentrated, finite forces acting at distinct 
points of the surface. No difficulty arises if, instead, continually dis
tributed surface stresses are assumed with the provision that all in
tegrals of such stresses over finite regions (and the regions that tend to 
zero) remain finite. 

A final remark is in order about the legitimate application of St. 
Venant's principle (or some equivalent statement) in cases of thin 
rods, shells, and so on. The only precise and consistent way to deal 
with thin elastic rods is the theory of the so-called one-dimensional 
elastica. In this theory the forces acting on the ends of the rod enter 
the computation only with their resultant vector and resultant mo
ment. This implies, evidently, a principle of "statically equivalent 
loads." What Saint Venant originally had in mind was doubtlessly 
the case of a long cylinder with infinite ratio of length to diameter. 
The purpose of the present paper was to show that an extension of the 
principle to bodies of finite dimensions is not legitimate. 
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