SOME INVARIANTS OF CERTAIN PAIRS OF HYPERSURFACES

CHUAN-CHIH HSIUNG

Introduction. It is known $[8,9]^{1}$ that if two surfaces in ordinary space have a common tangent plane at an ordinary point, then the ratio of their total curvatures at this point is a projective invariant, and the theorem holds true similarly for hyperspaces. ${ }^{2}$ In connection with this theorem and the investigation of Bouton [2], Buzano [3] and Bompiani [1] have shown the existence of a projective invariant, together with metric and projective characterizations, determined by the neighborhood of the second order of two surfaces S, S^{*} at two ordinary points O, O^{*} in ordinary space under the conditions that the tangent planes of the surfaces S, S^{*} at the points O, O^{*} be distinct and have $O O^{*}$ for the common line. Furthermore, the other case in which the tangent planes of the surfaces S, S^{*} at the points O, O^{*} are coincident ${ }^{3}$ has been considered in recent papers of the author [6, 7].

It is the purpose of the present paper to generalize the results of the two cases mentioned above.

Let V_{n-1}, V_{n-1}^{*} be two hypersurfaces in a space S_{n} of n dimensions, and t_{n-1}, t_{n-1}^{*} the tangent hyperplanes of the hypersurfaces V_{n-1}, V_{n-1}^{*} at two ordinary points O, O^{*}. For the subsequent discussion it is convenient to assume in Chapter I that the tangent hyperplanes t_{n-1}, t_{n-1}^{*} are coincident. We can (§1), as in ordinary space, determine a projective invariant by the neighborhood of the second order of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}; and the projective and metric characterizations of this invariant are given in the next two sections.

Chapter II treats of the case in which the tangent hyperplanes t_{n-1}, t_{n-1}^{*} are distinct, and the common tangent flat space t_{n-2} of t_{n-1}, t_{n-1}^{*} contains the line 00^{*}. We first ($\S 4$) show by analysis the existence of two projective invariants determined by the neighbor-

[^0]hood of the second order of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points $O, 0^{*}$; and then $(\S \S 5,6)$ give them simple projective and metric characterizations. From the fact that one of the two invariants is reduced to 1 when the immersed space S_{n} is of three dimensions, it follows that our result in this chapter stands actually for a generalization of that of Buzano and Bompiani.

Chapter I. Two hypersurfaces with common tangent HYPERPLANE AT TWO ORDINARY POINTS

1. Derivation of an invariant. Let V_{n-1}, V_{n-1}^{*} be two hypersurfaces in a space S_{n} of n dimensions with common tangent hyperplane t_{n-1} at two ordinary points O, O^{*}. Let x_{1}, \cdots, x_{n+1} denote the homogeneous projective coordinates of a point in the space S_{n}. If we choose the points O, O^{*} to be the vertices $(1,0, \cdots, 0),(0, \cdots, 0,1,0)$ of the system of reference, and the common tangent hyperplane t_{n-1} to be the coordinate hyperplane $x_{n+1}=0$ of the system, then the power series expansions of the hypersurfaces V_{n-1}, V_{n-1}^{*} in the neighborhood of the points O, O^{*} may be written in the form

$$
\begin{align*}
& V_{n-1}: \frac{x_{n+1}}{x_{1}}=\sum_{i, k=2}^{n} l_{i k} \frac{x_{i}}{x_{1}} \frac{x_{k}}{x_{1}}+\cdots \tag{1}\\
& V_{n-1}^{*}: \frac{x_{n+1}}{x_{n}}=\sum_{i, k=1}^{n-1} m_{i k} \frac{x_{i}}{x_{n}} \frac{x_{k}}{x_{n}}+\cdots \tag{2}
\end{align*}
$$

In order to find a projective invariant of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}, we have to consider the most general projective transformation of coordinates which shall leave the points O, O^{*} and the hyperplane t_{n-1} unchanged:

$$
\begin{align*}
x_{i} & =\sum_{r=1}^{n+1} a_{i r} x_{r}^{\prime} \quad(i=1, \cdots, n), \tag{3}\\
x_{n+1} & =a_{n+1, n+1} x_{n+1}^{\prime}
\end{align*}
$$

where

$$
\begin{align*}
a_{21}=\cdots=a_{n 1}=0, & a_{1 n}=\cdots=a_{n-1, n}=0, \tag{4}\\
D & =\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2, n-1} \\
a_{32} & a_{33} & \cdots & a_{3, n-1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n-1}
\end{array}\right| \neq 0 . \tag{5}
\end{align*}
$$

The effect of this transformation on equations (1), (2) is to produce
two other equations of the same form whose coefficients, indicated by accents, are given by the formulas

$$
a_{11} a_{n+1, n+1} l_{i k}^{\prime}=\sum_{r, \triangleleft-2}^{n} a_{r i} a_{a k} l_{r s} \quad(i, k=2, \cdots, n)
$$

$$
\begin{equation*}
a_{n n} a_{n+1, n+1} m_{i k}^{\prime}=\sum_{r, s=1}^{n-1} a_{r i} a_{s k} m_{r e} \quad(i, k=1, \cdots, n-1) \tag{6}
\end{equation*}
$$

From equations (4), (5), (6) it is easily seen that the determinants

$$
L=\left|\begin{array}{ccc}
l_{22} & l_{23} & \cdots
\end{array} l_{2 n},\left|\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1, n-1} \\
l_{32} & l_{33} & \cdots & l_{3 n} \\
\cdots & \cdot & \cdots & \cdot \\
l_{n 2} & l_{n 3} & \cdots & l_{n n}
\end{array}\right|, \quad M=\left|\begin{array}{llll}
m_{21} & m_{22} & \cdots & m_{2, n-1} \\
\cdots & \cdots & \cdots & \cdot \\
m_{n-1,1} & m_{n-1,2} & \cdots & m_{n-1, n-1}
\end{array}\right|,\right.
$$

and their transformed ones L^{\prime}, M^{\prime} are connected by the relations

$$
\begin{align*}
& a_{11}^{n-1} a_{n+1, n+1}^{n-1} L^{\prime}=a_{n n}^{2} D^{2} L \\
& a_{n n}^{n-1} a_{n+1, n+1}^{n-1} M^{\prime}=a_{11}^{2} D^{2} M \tag{7}
\end{align*}
$$

Further elimination of $a_{i k}$ from equations (6), (7) shows immediately that the quantity

$$
\begin{equation*}
I=\frac{L}{M}\left(\frac{m_{11}}{l_{n n}}\right)^{(n+1) / 3} \tag{8}
\end{equation*}
$$

is a projective invariant determined by the neighborhood of the second order of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}.
2. A projective characterization of the invariant I. Let the polar spaces of the line 00^{*} with respect to the asymptotic hypercones of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*} be respectively denoted by t_{n-2}, t_{n-2}^{*}, which determine a space t_{n-3} of $n-3$ dimensions in the common tangent hyperplane $x_{n+1}=0$. If the $n-2$ vertices, other than O and O^{*}, of the system of reference in the hyperplane $x_{n+1}=0$ be chosen in the space t_{n-8}, then the invariant I may be reduced to

$$
\begin{equation*}
I=\frac{L_{n n}}{M_{11}}\left(\frac{m_{11}}{l_{n n}}\right)^{(n-2) / 3} \tag{9}
\end{equation*}
$$

where $L_{n n}, M_{11}$ are the minors of $l_{n n}, m_{11}$ in the determinants L, M respectively.

For the purpose of finding a projective characterization of the in-
variant I we first observe the space S_{3} determined by the vertices $(1,0, \cdots, 0),(0, \cdots, 0,1,0),(0, \cdots, 0,1)$ and any one, say for instance $\mathrm{O}_{2}(0,1,0, \cdots, 0)$, of the system of reference in the space t_{n-8}. The space S_{3} intersects the hypersurfaces V_{n-1}, V_{n-1}^{*} in two surfaces S, S^{*}. Since the tangent planes of the surfaces S, S^{*} at the points O, O^{*} are coincident we have a projective invariant, denoted by J,

$$
\begin{equation*}
J=\frac{l_{22}}{m_{22}}\left(\frac{m_{11}}{l_{n n}}\right)^{1 / 8} \tag{10}
\end{equation*}
$$

whose projective characterization has been obtained [6].
Let Q (Q^{*}) be any quadric in the space S_{3} which has $\mathrm{OO}_{2}\left(O^{*} \mathrm{O}_{2}\right)$, $O O^{*}\left(O O^{*}\right)$ for generators and whose curve of intersection with the element of the second order of the surface $S\left(S^{*}\right)$ at the point $O\left(O^{*}\right)$ has a cusp at $O\left(O^{*}\right)$. If the cone projecting from the point O_{2} the curve of intersection of the two quadrics Q, Q^{*} be tangent to the common tangent plane $00^{*} \mathrm{O}_{2}$ along a line through the point O_{2}, then this line must be one of the lines (cf. [6])

$$
\begin{align*}
& x_{n} \pm(\pm 1)^{1 / 2}\left(\frac{m_{11} m_{22}}{l_{22} l_{n n}}\right)^{1 / 4} x_{1}=0 \tag{11}\\
& x_{8}=\cdots=x_{n-1}=x_{n+1}=0
\end{align*}
$$

We may now uniquely determine a point P on the line $O 0^{*}$ such that the cross ratio of the three points O, O^{*}, P, and the intersection of the line (11) with $O O^{*}$ is equal to $J^{1 / 4}$. On the other hand, the asymptotic hypercones of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*} determine a pencil of hyperquadrics in the hyperplane $x_{n+1}=0$, among which there exist n hypercones, two of them being the asymptotic hypercones. The line $O O^{*}$ intersects each of the other $n-2$ hypercones in a pair of points. Let $Q_{i}(i=1, \cdots, n-2)$ be any one of each pair of these points and D_{i} the cross ratio of the four points O, O^{*}, Q_{i}, P on the line $O O^{*}$, then we may easily show that the invariant I can be expressed in terms of the $n-2$ cross ratios $D_{1}, D_{2}, \cdots, D_{n-2}$ as follows:

$$
\begin{equation*}
I=(\pm 1)^{n-2}\left(D_{1} D_{2} \cdots D_{n-2}\right)^{2} \tag{12}
\end{equation*}
$$

3. A metric characterization of the invariant I. It is deemed worth while to give in this section a simple metric characterization of the invariant I. For this purpose we choose an orthogonal Cartesian coordinate system in such a way that the point O be the origin, the line $O O^{*}$ be the X_{n-1}-axis, and the common tangent hyperplane t_{n-1} be the coordinate hyperplane $X_{n}=0$. Then the power series expan-
sions of the hypersurfaces V_{n-1}, V_{n-1}^{*} in the neighborhood of the points O, O^{*} may be put into the form

$$
\begin{align*}
V_{n-1}: \quad X_{n}= & \sum_{i, k=1}^{n-1} \lambda_{i k} X_{i} X_{k}+\cdots \tag{13}\\
V_{n-1}^{*}: \quad X_{n}= & \sum_{i, k=1}^{n-2} \mu_{i k} X_{i} X_{k}+2 \sum_{i=1}^{n-2} \mu_{i, n-1} X_{i}\left(X_{n-1}-h\right) \tag{14}\\
& +\mu_{n-1, n-1}\left(X_{n-1}-h\right)^{2}+\cdots
\end{align*}
$$

where h is the distance between the points O, O^{*}.
Let $y_{0}, y_{1}, \cdots, y_{n}$ be the homogeneous coordinates of a point defined by the formulas

$$
\begin{equation*}
X_{i}=y_{i} / y_{0} \quad(i=1, \cdots, n) \tag{15}
\end{equation*}
$$

and let us consider the most general projective transformation of coordinates which shall leave the point O and the common tangent hyperplane t_{n-1} invariant, and change the point O^{*} into the vertex ($0, \cdots, 0,1,0$) of the new coordinate system:

$$
\begin{align*}
& y_{0}=\sum_{i=0}^{n} a_{0 i} y_{i}^{\prime} \\
& y_{i}=\sum_{r=1}^{n} a_{i r} y_{r}^{\prime} \quad(i=1, \cdots, n-1), \tag{16}\\
& y_{n}=a_{n n} y_{n}^{\prime}
\end{align*}
$$

where

$$
\begin{align*}
a_{1, n-1}=\cdots=a_{n-2, n-1}=0, & a_{n-1, n-1}=h a_{0, n-1}, \tag{17}\\
\Delta & =\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1, n-2} \\
a_{21} & a_{22} & \cdots & a_{2, n-2} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n-2,1} & a_{n-2,2} & \cdots & a_{n-2, n-2}
\end{array}\right| \neq 0 .
\end{align*}
$$

By transformations (15) and (16), equations (13), (14) shall be carried into two others of the form

$$
\begin{align*}
& V_{n-1}: \frac{y_{n}^{\prime}}{y_{0}^{\prime}}=\sum_{i, k=1}^{n-1} p_{i k} \frac{y_{i}^{\prime}}{y_{0}^{\prime}} \frac{y_{k}^{\prime}}{y_{0}^{\prime}}+\cdots, \tag{19}\\
& V_{n-1}^{*}: \frac{y_{n}^{\prime}}{y_{n-1}^{\prime}}=\sum_{i, k=0}^{n-2} q_{i k} \frac{y_{i}^{\prime}}{y_{n-1}^{\prime}} \frac{y_{k}^{\prime}}{y_{n-1}^{\prime}}+\cdots, \tag{20}
\end{align*}
$$

where the coefficients $p_{i k}, q_{i k}$ are given by the equations:

$$
\begin{gather*}
a_{00} a_{n n} p_{i k}=\sum_{r, s=1}^{n-1} a_{r i} a_{s k} \lambda_{r s} \quad(i, k=1, \cdots, n-1) \tag{21}\\
a_{n n} a_{0, n-1} q_{i k}=\sum_{r, s=0}^{n-2} \alpha_{r i} \alpha_{k k} \mu_{r s} \quad(i, k=0,1, \cdots, n-2), \tag{22}\\
\alpha_{00}=-h a_{00}, \quad \alpha_{i 0}=0, \quad \alpha_{0 i}=a_{n-1, i}-h a_{0 i}, \quad \alpha_{r i}=a_{r i} \tag{23}\\
\mu_{00}=\mu_{n-1, n-1}, \quad \mu_{0 r}=\mu_{r 0}=\mu_{n-1, r}=\mu_{r, n-1} \quad(i, r=1, \cdots, n-2)
\end{gather*}
$$

Let

$$
\begin{aligned}
& \Phi=\left|\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \cdots & \lambda_{1, n-1} \\
\lambda_{21} & \lambda_{22} & \cdots & \lambda_{2, n-1} \\
\cdots & \cdot & \cdot & \cdots \\
\lambda_{n-1,1} & \lambda_{n-1,2} & \cdots & \lambda_{n-1, n-1}
\end{array}\right|, \Psi=\left|\begin{array}{cccc}
\mu_{11} & \mu_{12} & \cdots & \mu_{1, n-1} \\
\mu_{21} & \mu_{22} & \cdots & \mu_{2, n-1} \\
\cdots & \cdot & \cdots & \cdots \\
\mu_{n-1,1} & \mu_{n-1,2} & \cdots & \mu_{n-1, n-1}
\end{array}\right|,
\end{aligned}
$$

then from equations (17), (18), (21), (22), (23) we obtain

$$
\begin{equation*}
a_{00}^{n-1} a_{n n}^{n-1} P=a_{n-1, n-1}^{2} \Delta^{2} \Phi, \quad a_{n n}^{n-1} a_{0, n-1}^{n-1} Q=h^{2} a_{00}^{2} \Delta^{2} \Psi \tag{24}
\end{equation*}
$$

Making use of the result obtained in $\S 1$ and observing equations (19), (20) we see that the projective invariant I associated with the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*} is

$$
\begin{equation*}
I=\frac{P}{Q}\left(\frac{q_{00}}{p_{n-1, n-1}}\right)^{(n+1) / 3} \tag{25}
\end{equation*}
$$

Furthermore, substituting (21), (22), (24) in (25) and reducing by equations (17) it follows that the invariant I now takes the form

$$
\begin{equation*}
I=\frac{\Phi}{\Psi}\left(\frac{\mu_{n-1, n-1}}{\lambda_{n-1, n-1}}\right)^{(n+1) / 8} \tag{26}
\end{equation*}
$$

Let K, K^{*} be the curvatures of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}; and R, R^{*} the curvatures at the points O, O^{*} of the plane sections of the hypersurfaces V_{n-1}, V_{n-1}^{*} made by the plane of the line $O O^{*}$ and the normal to the common tangent hyperplane t_{n-1} at any point on the line $O O^{*}$. By a known formula it is easy to
demonstrate that

$$
\begin{equation*}
K / K^{*}=\Phi / \Psi, \quad R / R^{*}=\lambda_{n-1, n-1} / \mu_{n-1, n-1} \tag{27}
\end{equation*}
$$

and therefore that

$$
\begin{equation*}
I=\frac{K}{K^{*}}\left(\frac{R^{*}}{R}\right)^{(n+1) / 3} \tag{28}
\end{equation*}
$$

Hence we have the following theorem.
Theorem. Let V_{n-1}, V_{n-1}^{*} be two hypersurfaces in a space S_{n} of n dimensions having a common tangent hyperplane t_{n-1} at two ordinary point $O, O^{*} ; K, K^{*}$ the curvatures of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}; and R, R^{*} the curvatures at the points O, O^{*} of the plane sections of the hypersurfaces V_{n-1}, V_{n-1}^{*} made by the plane of the line 00* and the normal to the common tangent hyperplane t_{n-1} at any point on the line $0 O^{*}$. Then $\left(K / K^{*}\right)\left(R^{*} / R\right)^{(n+1) / 3}$ is a projective invariant associated with the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}.

Chapter II. Two hypersurfaces with distinct tangent HYPERPLANES AT TWO ORDINARY POINTS

4. Derivation of invariants. Let V_{n-1}, V_{n-1}^{*} be two hypersurfaces in a space S_{n} of n dimensions such that the tangent hyperplanes t_{n-1}, t_{n-1}^{*} at two ordinary points O, O^{*} are distinct, and the common tangent flat space t_{n-2} of t_{n-1}, t_{n-1}^{*} contains the line $O O^{*}$. If we choose the points O, O^{*} to be the vertices $(0,1,0, \cdots, 0),(0, \cdots, 0,1,0)$ of a homogeneous projective coordinate system of reference, and the tangent hyperplanes t_{n-1}, t_{n-1}^{*} to be the coordinate hyperplanes $x_{1}=0$, $x_{n+1}=0$ respectively, then the power series expansions of the hypersurfaces V_{n-1}, V_{n-1}^{*} in the neighborhood of the points O, O^{*} may be written in the form

$$
\begin{align*}
& V_{n-1}: \frac{x_{1}}{x_{2}}=\sum_{i, k=3}^{n+1} l_{i k} \frac{x_{i}}{x_{2}} \frac{x_{k}}{x_{2}}+\cdots \tag{29}\\
& V_{n-1}^{*}: \frac{x_{n+1}}{x_{n}}=\sum_{i, k=1}^{n-1} m_{i k} \frac{x_{i}}{x_{n}} \frac{x_{k}}{x_{n}}+\cdots \tag{30}
\end{align*}
$$

Considering the most general projective transformation of coordinates which shall leave the points O, O^{*} and the hyperplanes t_{n-1}, \boldsymbol{t}_{n-1}^{*} unchanged, we may easily show as in $\S 1$ that the quantities

$$
\begin{equation*}
I=\frac{L M l_{n n} m_{22}}{L_{n+1, n+1} M_{11}}, \quad J=\left(\frac{M}{L}\right)^{n-3}\left(\frac{L_{n+1, n+1} m_{22}}{M_{11} l_{n n}}\right)^{n+1} \tag{31}
\end{equation*}
$$

are projective invariants determined by the neighborhood of the second order of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}, where $L_{n+1, n+1}$, M_{11} are respectively the minors of $l_{n+1, n+1}, m_{11}$ in the determinants
and $L^{\prime}, M^{\prime}, L_{n+1, n+1}^{\prime}, M_{11}^{\prime}$ are denoted by similar expressions.
5. Projective characterizations of the invariants I, J. By suitable choice of the system of reference the invariants I, J of equations (31) can be simplified. In fact, if we choose $n-1$ vertices of the system in the common tangent flat space t_{n-2}, and the other two $O_{n+1}(0, \cdots, 0,1), O_{1}(1,0, \cdots, 0)$ respectively on the polars t, t^{*} of the flat space t_{n-2} with respect to the asymptotic hypercones of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}, the invariants I, J then take the simple form

$$
\begin{align*}
& I=l_{n n} l_{n+1, n+1} m_{11} m_{22}, \\
& J=\left(\frac{L_{n+1, n+1}}{M_{11}}\right)^{4}\left(\frac{m_{11}}{l_{n+1, n+1}}\right)^{n-3}\left(\frac{m_{22}}{l_{n n}}\right)^{n+1} \tag{32}
\end{align*}
$$

It should be noticed that the invariant J is reduced to 1 as $n=3$.
The polars t, t^{*} determine a space S_{3}, which intersects the hypersurfaces V_{n-1}, V_{n-1}^{*} in two surfaces S, S^{*}. These two surfaces S, S^{*} are evidently in the class considered by Buzano and Bompiani, and the corresponding invariant may be easily found from Bompiani's note [1] to coincide just with the invariant I. Thus we reach the conclusion:

The invariant I associated with the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*} is the invariant of Buzano at the points O, O^{*} of the surfaces S, S^{*} in which the hypersurfaces V_{n-1}, V_{n-1}^{*} are intersected by the space S_{3} determined by the polars t, t^{*}.

To characterize projectively the other invariant J we consider any hyperplane π_{α} through the common tangent flat space t_{n-2} :

$$
\begin{equation*}
x_{n+1}=\alpha x_{1} \quad(\alpha \neq 0) \tag{33}
\end{equation*}
$$

which intersects the hypersurfaces V_{n-1}, V_{n-1}^{*} in two hypersurfaces V_{n-2}, V_{n-2}^{*} of $n-2$ dimensions. Since these two hypersurfaces V_{n-2}, V_{n-2}^{*} have a common tangent hyperplane at the points O, O^{*} we may
determine an invariant, denoted by I_{α}, as in §1:

$$
\begin{equation*}
I=\alpha^{2(n-8) / 3} \frac{L_{n+1, n+1}}{M_{11}}\left(\frac{m_{22}}{l_{n n}}\right)^{n / 8} \tag{34}
\end{equation*}
$$

On the other hand, it is useful to consider the hypercones C, C^{*} projecting respectively from the vertices $O_{1}(1,0, \cdots, 0)$, $O_{n+1}(0, \cdots, 0,1)$ the asymptotic hypercones at the points O, O^{*} of the hypersurfaces V_{n-1}, V_{n-1}^{*}. These two hypercones C, C^{*} determine a pencil of hyperquadrics in the space S_{n}, among which there exist $n-1$ hypercones, two of them being C, C^{*}. The line $O_{1} O_{n+1}$ intersects each of the other $n-3$ hypercones in a pair of points. Let $Q_{i}(i=1, \cdots, n-3)$ be any one of each pair of these points, P the point of intersection of the line $O_{1} O_{n+1}$ with the hyperplane π_{α}, and D_{i} the cross ratio of the four points O_{1}, O_{n+1}, Q_{i}, P on the line $O_{1} O_{n+1}$; then it follows that the invariant J can be expressed in terms of the invariant I_{α} and the $n-3$ cross ratios $D_{1}, D_{2}, \cdots, D_{n-8}$ as follows:

$$
\begin{equation*}
J=I_{\alpha}^{3}\left(D_{1} D_{2} \cdots D_{n-8}\right)^{2} \tag{35}
\end{equation*}
$$

6. Metric characterizations of the invariants I, J. For the purpose of finding simple metric characterizations of the invariants I, J, we choose an orthogonal Cartesian coordinate system in such a way that the point O is the origin, the line $O O^{*}$ is the X_{n-1}-axis, and the tangent hyperplane t_{n-1} is the coordinate hyperplane $X_{1}=0$. Then the power series expansions of the hypersurfaces V_{n-1}, V_{n-1}^{*} in the neighborhood of the points O, O^{*} may be put into the form

$$
\begin{align*}
V_{n-1}: X_{1}= & \sum_{i, k=2}^{n} \lambda_{i k} X_{i} X_{k}+\cdots \tag{36}\\
V_{n-1}^{*}: X_{n}= & \mu X_{1}+\sum_{i, k=1}^{n-2} \mu_{i k} X_{i} X_{k}+2 \sum_{i=1}^{n-2} \mu_{i, n-1} X_{i}\left(X_{n-1}-h\right) \tag{37}\\
& +\mu_{n-1, n-1}\left(X_{n-1}-h\right)^{2}+\cdots,
\end{align*}
$$

where h is the distance between the points O, O^{*}, and $\mu=\cot \omega, \omega$ being the angle of the tangent hyperplanes t_{n-1}, t_{n-1}^{*}.

In order to express the two invariants I, J in terms of the coefficients of expansions (36), (37) we have first as in §3 to consider the homogeneous coordinates $y_{0}, y_{1}, \cdots, y_{n}$ of a point defined by formulas (15) and the most general projective transformation of coordinates, which shall leave the point O and the tangent hyperplane t_{n-1} invariant and carry the point O^{*} and the tangent hyperplane t_{n-1}^{*} into the vertex $(0, \cdots, 0,1,0)$ and the coordinate hyperplane
$y_{n}^{\prime}=0$ of the new coordinate system respectively. An easy calculation, which shall be omitted here, suffices to demonstrate the result as follows:

$$
\begin{equation*}
I=h^{4} \frac{\Phi \Psi \lambda_{n-1, n-1} \mu_{n-1, n-1}}{\Phi_{n n} \Psi_{11}}, \quad J=\left(\frac{\Psi}{\Phi}\right)^{n-8}\left(\frac{\Phi_{n n} \mu_{n-1, n-1}}{\Psi_{11} \lambda_{n-1, n-1}}\right)^{n+1}, \tag{38}
\end{equation*}
$$

where $\Phi_{n n}, \Psi_{11}$ denote respectively the minors of $\lambda_{n n}, \mu_{11}$ in the determinants

$$
\Phi=\left|\begin{array}{cccc}
\lambda_{22} & \lambda_{23} & \cdots & \lambda_{2 n} \\
\lambda_{32} & \lambda_{33} & \cdots & \lambda_{3 n} \\
\cdots & \cdots & \cdots & \cdots \\
\lambda_{n 2} & \lambda_{n 3} & \cdots & \lambda_{n n}
\end{array}\right|, \quad \Psi=\left|\begin{array}{ccccc}
\mu_{11} & \mu_{12} & \cdots & \mu_{1, n-1} \\
\mu_{21} & \mu_{22} & \cdots & \mu_{2, n-1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mu_{n-1,1} & \mu_{n-1,2} & \cdots & \mu_{n-1, n-1}
\end{array}\right| .
$$

Finally, we shall make use of the normals $O N, O N^{*}$ at the point O of the common tangent flat space t_{n-2} in the tangent hyperplanes t_{n-1}, t_{n-1}^{*}. Let K_{2}, K_{2}^{*} be respectively the curvatures at the points O, O^{*} of the plane sections of the hypersurfaces V_{n-1}, V_{n-1}^{*} made by the planes $O O^{*} N^{*}, O O^{*} N$. Further, let K_{n}, K_{n}^{*} be the curvatures of the hypersurfaces V_{n-1}, V_{n-1}^{*} at the points O, O^{*}; and K_{n-1}, K_{n-1}^{*} the curvatures at the points O, O^{*} of the hypersurfaces V_{n-2}, V_{n-2}^{*} of $n-2$ dimensions in which the tangent hyperplanes t_{n-1}^{*}, t_{n-1} intersect the hypersurfaces V_{n-1}, V_{n-1}^{*} respectively. Then

$$
K_{n}=2^{n-1} \Phi, \quad K_{n}^{*}=2^{n-1}\left(1+\mu^{2}\right)^{-(n+1) / 2} \Psi,
$$

$$
\begin{align*}
K_{n-1} & =2^{n-2}\left(1+\mu^{2}\right)^{(n-2) / 2} \Phi_{n n}, & K_{n-1}^{*} & =2^{n-2} \Psi_{11}, \tag{39}\\
K_{2} & =2\left(1+\mu^{2}\right)^{1 / 2} \lambda_{n-1, n-1}, & K_{2}^{*} & =2 \mu_{n-1, n-1},
\end{align*}
$$

and hence we arrive at the following metric characterizations of the invariants I, J :

$$
\begin{equation*}
I=\frac{h^{4}}{16} \frac{K_{n} K_{n}^{*} K_{2} K_{2}^{*}}{K_{n-1} K_{n-1}^{*} \sin ^{2(n-1) \omega}}, \quad J=\left(\frac{K_{n}^{*}}{K_{n}}\right)^{n-8}\left(\frac{K_{n-1} K_{2}^{*}}{K_{n-1}^{*} K_{2}}\right)^{n+1} . \tag{40}
\end{equation*}
$$

Bibliography

1. E. Bompiani, Invarianti proiettivi di una particolare coppia di elementi superficiali del 2° ordine, Bollettino della Unione Matematica Italiana vol. 14 (1935) pp. 237-243.
2. C. L. Bouton, Some examples of differential invariants, Bull. Amer. Math. Soc. vol. 4 (1898) pp. 313-322.
3. P. Buzano, Invariante proiettivo di una particolare coppia di elementi di superficie, Bollettino della Unione Matematica Italiana vol. 14 (1935) pp. 93-98.
4. ——_ Interpretazione proiettiva dell'invariante di Mehmke, Bollettino della Unione Matematica Italiana vol. 15 (1936) pp. 173-175.
5. C. C. Hsiung, Projective differential geometry of a pair of plane curves, Duke Math. J. vol. 10 (1943) pp. 539-546.
6. -, Projective invariants of a pair of surfaces, Duke Math. J. vol. 10 (1943) pp. 717-720.
7. - On a projective invariant of a certain pair of surfaces, to be published elsewhere.
8. R. Mehmke, Einige Sätze ubber die räumliche Collineation und Affinität, welche sich auf die Krümmung von Curven und Flächen beziehen, Schlömilchs Zeitschrift für Mathematik und Physik vol. 36 (1891) pp. 56-60.
9. ——, Über zwei die Krümmung von Curven und das Gauss'sche Krümmungsmass von Flächen betreffende charakteristische Eigenschaften der linearen Punkttransformationen, ibid. vol. 36 (1891) pp. 206-213.
10. C. Segre, Su alcuni punti singolari delle curve algebriche, et sulla linea parabolica di una superficie, Rendiconti dei Lincei (5) vol. 6 (1897) pp. 168-175.
11. A. Terracini, Densitd di una corrispondenza di tipo dualistico, ed estensione dell'invariante di Mehmke-Segre, Atti Accad. Sci. Torino vol. 71 (1936) pp. 310-328.

National University of Chekiang

[^0]: Presented to the Society, February 26, 1945; received by the editors October 3, 1944, and, in revised form, March 19, 1945.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
 ${ }^{2}$ The simple projective characterizations of this invariant were given by C. Segre [10] for two plane curves and by P. Buzano [4] for two surfaces in space $S_{n}(n>2)$. On the other hand, A. Terracini [11] also interpreted projectively this invariant by virtue of the conception of density of dualistic correspondences.
 ${ }^{3}$ It should be noted that for two plane curves having a common tangent at two ordinary points no projective invariant can be determined by the neighborhood of the second order of the two curves at these points. See my paper [5].

