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Introduction. I t is known [8, 9 ] 1 that if two surfaces in ordinary 
space have a common tangent plane at an ordinary point, then the 
ratio of their total curvatures at this point is a projective invariant, 
and the theorem holds true similarly for hyperspaces.2 In connection 
with this theorem and the investigation of Bouton [2], Buzano [3] 
and Bompiani [l ] have shown the existence of a projective invariant, 
together with metric and projective characterizations, determined by 
the neighborhood of the second order of two surfaces 5, S* a t two 
ordinary points 0 , 0* in ordinary space under the conditions that 
the tangent planes of the surfaces 5, S* at the points 0, 0* be distinct 
and have 00* for the common line. Furthermore, the other case in 
which the tangent planes of the surfaces 5, S* at the points 0, 0* are 
coincident8 has been considered in recent papers of the author [6, 7] . 

I t is the purpose of the present paper to generalize the results of 
the two cases mentioned above. 

Let Vn-h V*~\ be two hypersurfaces in a space Sn of n dimensions, 
and /«-I, Jn*Li the tangent hyperplanes of the hypersurfaces Fn-i , V*-\ 
at two ordinary points 0 , 0*. For the subsequent discussion it is con
venient to assume in Chapter I that the tangent hyperplanes /n_i, /n1i 
are coincident. We can (§1), as in ordinary space, determine a pro
jective invariant by the neighborhood of the second order of the hy
persurfaces Vn-u V*~\ at the points 0 , 0*\ and the projective and 
metric characterizations of this invariant are given in the next two 
sections. 

Chapter II treats of the case in which the tangent hyperplanes 
/n_i, t*~i are distinct, and the common tangent flat space tn^ of 
Jn-i> *«*-i contains the line 00*. We first (§4) show by analysis the 
existence of two projective invariants determined by the neighbor-
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
8 The simple projective characterizations of this invariant were given by C. Segre 

[lO] for two plane curves and by P. Buzano [4] for two surfaces in space Sn («>2). 
On the other hand, A. Terracini [ l l ] also interpreted projectively this invariant by 
virtue of the conception of density of dualistic correspondences. 

8 It should be noted that for two plane curves having a common tangent at two 
ordinary points no projective invariant can be determined by the neighborhood of 
the second order of the two curves at these points. See my paper [5]. 
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hood of the second order of the hypersurfaces Vn-i, Fn*.i at the points 
0 , 0*; and then (§§S, 6) give them simple projective and metric char
acterizations. From the fact that one of the two invariants is reduced 
to 1 when the immersed space Sn is of three dimensions, it follows 
that our result in this chapter stands actually for a generalization of 
that of Buzano and Bompiani. 

CHAPTER I. Two HYPERSURFACES WITH COMMON TANGENT 

HYPERPLANE AT TWO ORDINARY POINTS 

1. Derivation of an invariant. Let Fn-i , Fn1i be two hypersurfaces 
in a space Sn of n dimensions with common tangent hyperplane /»_i 
a t two ordinary points 0 , 0*. Let Xi, • • • , *n+i denote the homogene
ous projective coordinates of a point in the space S». If we choose the 
points 0 , 0* to be the vertices (1, 0, • • , 0), (0, • • - , 0, 1, 0) of the 
system of reference, and the common tangent hyperplane /n-i to be 
the coordinate hyperplane #n+i = 0 of the system, then the power se
ries expansions of the hypersurfaces Fn~i, Fnt-i in the neighborhood 
of the points 0 , 0* may be written in the form 

(i) 

(2) 

* n + l 

%1 t\JU»2 # 1 %\ 

%n+l —̂* X% Xk 
= Zantac h 

Xn i,k*aï Xn X% 

In order to find a projective invariant of the hypersurfaces Vn~u 
V*-i a t the points 0 , 0*, we have to consider the most general projec
tive transformation of coordinates which shall leave the points 0 , 0* 
and the hyperplane /n-i unchanged : 

(3) 

n+1 
Xi = ] £ airXr 

r-1 
/ 

Xn+l = dn+l.n+lXn+l, 

(i = 1, • • • , W), 

where 

(4) 

(5) 

atl = . . . = ani = 0, 

D = 

#22 ^23 

#32 #38 

« ! » » • • • 

* * * # 2 , n - l 

• • • Û s . n - l 

#n-l ,2 #n~l,3 * * ' # n - l , n - l 

#n-l,n = 0, 

^ 0 . 

The effect of this transformation on equations (1), (2) is to produce 
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two other equations of the same form whose coefficients, indicated by 
accents, are given by the formulas 

011<*fM-l,n+lJ** ** ^ C ar%G*klri (*', k « 2, • • • , n), 

(6) 
r,««2 

onn0 n +l ,n+ l w *& ** 2 - ) ariGakfftr$ ( Î , & = 1 , • • • , W — 1 ) . 
r ,«- l 

From equations (4), (5), (6) it is easily seen that the determinants 

L « 

hi hz • ' ' 2̂n 

^32 ^33 * * * ^3n 

Jn2 £ n3 ' ' ' In 

M « 

W H Wi2 

W21 W22 

• f » l , n - l 

• W2,n~l 

Wn-1,1 ^ n - 1 , 2 * * * W a - i . n - i 

and their transformed ones L', Af' are connected by the relations 

(7) 

n_l « - 1 , 2 2 
o n #n+ l .n+ l i^ = annV JL, 

n—l n—l f 2 ^ 2 
Gnn fln+l(n+lM = a\\D M. 

Further elimination of aa from equations (6), (7) shows immediately 
that the quantity 

(8) 
L /wnyw + 1 ) / 3 

*s a projective invariant determined by the neighborhood of the second 
order of the hyper surfaces F»_i, V*-i at the points 0, 0*. 

2. A projective characterization of the invariant I. Let the polar 
spaces of the line 00* with respect to the asymptotic hypercones of 
the hypersurfaces Fn-i, V*~\ at the points 0, 0* be respectively de
noted by /n_2> CL2, which determine a space /n-3 of n — 3 dimensions 
in the common tangent hyperplane #n+i=0. If the n — 2 vertices, 
other than 0 and 0*, of the system of reference in the hyperplane 
*n+i=0 be chosen in the space J»_3, then the invariant I may be re
duced to 

(9) 
Lnn / # i Wnyn-2)/8 

where Lnn, Mn are the minors of Znn, mix in the determinants L, Af 
respectively. 

For the purpose of finding a projective characterization of the in-
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variant 7 we first observe the space 5a determined by the vertices 
(1, 0, • • • , 0), (0, • • • , 0, 1, 0), (0, • • • , 0, 1) and any one, say for 
instance 02(0, 1, 0, • • • , 0), of the system of reference in the space 
/n_8. The space 58 intersects the hypersurfaces Fw_i, Fw*-i in two sur
faces 5, S*. Since the tangent planes of the surfaces 5, S* at the points 
0, 0* are coincident we have a projective invariant, denoted by / , 

(10) 7 » (—- ) , 
*#22 \ *>nn / 

whose projective characterization has been obtained [6]. 
Let Q (Q*) be any quadric in the space Sz which has 002 (0*02), 

00* (00*) for generators and whose curve of intersection with the 
element of the second order of the surface S (S*) at the point 0 (0*) 
has a cusp at 0 (0*). If the cone projecting from the point 02 the 
curve of intersection of the two quadrics Q, Q* be tangent to the com
mon tangent plane 00*02 along a line through the point 02, then this 
line must be one of the lines (cf. [ö]) 

' fftllfft22\ 

(11) \ t22'nn 
* „ ± ( ± l ) 1 / s ( — r - ) * i - 0 , 

%z — . . . = Xn-l » Xn+1 aB 0. 

We may now uniquely determine a point P on the line 00* such that 
the cross ratio of the three points 0, O*, P, and the intersection of the 
line (11) with 00* is equal to J1/4. On the other hand, the asymptotic 
hypercones of the hypersurfaces V*~u ^n*-i at the points 0, 0* de
termine a pencil of hyperquadrics in the hyperplane x*+i=0, among 
which there exist n hypercones, two of them being the asymptotic 
hypercones. The line 00* intersects each of the other w — 2 hypercones 
in a pair of points. Let Qi (i = 1, • • • , w — 2) be any one of each pair 
of these points and Di the cross ratio of the four points 0, 0*, Qi, P 
on the line 00*, then we may easily show that the invariant I can be 
expressed in terms of then — 2 cross ratios Pi, Z>2, • • • , fln-2 as follows: 

(12) 7 - (± l)^(DiÜ2 • * • Dn-2)2. 

3. A metric characterization of the invariant 7. It is deemed worth 
while to give in this section a simple metric characterization of the 
invariant 7. For this purpose we choose an orthogonal Cartesian co
ordinate system in such a way that the point 0 be the origin, the 
line 00* be the -X^i-axis, and the common tangent hyperplane tn~\ 
be the coordinate hyperplane Xn = 0. Then the power series expan-
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sions of the hypersurfaces Fn~i, Fn*-i in the neighborhood of the 
points 0 , 0* may be put into the form 

(13) Vn-l' Xn = Z^^ikXiXk + V ' > 
i,k~l 

n—2 n—2 

/4 A\ Vn-ll Xn = 2 ^ fXikXiXk + 2 2 J M<,n-1-X"*(^"n-1 "~ &) 
(14) < i f c-l i«i 

+ iUn^i i n_i(Xn_i - ft)2 + ' • • , 

where A is the distance between the points 0 , 0*. 
Let ^o, yi, • • • , yn be the homogeneous coordinates of a point de

fined by the formulas 

(15) Xi = yi/yQ ( * = ! , • • • , w), 

and let us consider the most general projective transformation of co
ordinates which shall leave the point 0 and the common tangent 
hyperplane /n_i invariant, and change the point 0* into the vertex 
(0, • • 

(16) 

where 

(17) 

(18) 

, 0, 1, 0) of the new coordinate system: 
n 

y o = ]C aoiyi , 

n 

r ~ l 

3>n * dnnyn , 

(t - 1, • ' • , ft - 1) , 

# l , n - l a n _ 2 , n - l = 0 , 0 n - i , n - l = Aflo.n-l» 

o n #12 • • • # l , n - 2 

#21 #22 * ' ' # 2 , n - 2 i 
7 * 0 . 

^ n - 2 , 1 0n -2 ,2 0n-2,n-~2 

By transformations (15) and (16), equations (13), (14) shall be car
ried into two others of the form 

(19) 

(20) 

v m yi _ n ^ . yt yt , 
Kn-i: — 7 - = 2^ #<*—; r + 

3>o <,jfc-i y o y o 
T.* ^n ^ ?• y* . 
Kn-i: —7— = 2-f ?<* — : r yn-l t,fc~0 ^ n - 1 ^ n - l 

where the coefficients piJe, q%k are given by the equations: 
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(21) aoQdnnpik =* 2 ^ aria9kKra 

r , « - l 

n-% 

(22) 

(*,*=» 1, • • • , » - 1); 

(», * - 0, 1, • • • , n - 2), 

(23) 
aoo = — hdoo, ctio = 0, otQi =* an- i , i — /?a0i, <*H = art-, 

MOO = Mn~l,n-1> MOr = MrO = Mn- l , r = Mr,n-1 (*\ f = 1 , * * * , » ~ 2 ) . 

Let 

X n Xi2 • • * X i , n - . i 

X21 X22 ' * * X2 ,n-1 
$ = 

Xn-1,1 X n _ i , 2 • ' ' X n __i , n _i 

Pll Pl2 * * * pl,n-l 

P21 p22 ' * * P2,n-1 

, * 

Mil Ml2 * ' ' Ml ,n -1 

M21 M22 • * * M2,n-1 

e = 

Mn-1,1 Mn-1,2 ' * ' M n - l , n - l 

#00 #01 * ' * #0 ,n -2 

#10 #11 * * * # l , n - 2 

Pn-1,1 Pn-1,2 ' * ' pn-l,n-l I I #n-2 ,0 ^ n - 2 , 1 * * * # n - 2 , n - 2 

then from equations (17), (18), (21), (22), (23) we obtain 

n— 1 n—1 2 2 n—\ n—1 2 2 2 

(24) a00 ann P =» an_ifn-.iA $, ann a0,n-iQ - A ̂ ooA ^ . 

Making use of the result obtained in §1 and observing equations 
(19), (20) we see that the projective invariant I associated with the 
hypersurfaces Vn-i, V*-i at the points O, O* is 

(25) 
_ P ( goo \ 

Q\ pn-i,„_!/ 

(n+ l ) / l 

Furthermore, substituting (21), (22), (24) in (25) and reducing by 
equations (17) it follows that the invariant I now takes the form 

(26) 
$ / M n - l , n - l \ (n+l)/g 

Let K, K* be the curvatures of the hypersurfaces Fn~i, V^x at 
the points O, 0*; and i?, 2?* the curvatures at the points 0, 0* of the 
plane sections of the hypersurfaces Vn-i, V^i made by the plane of 
the line 00* and the normal to the common tangent hyperplane tn-i 
at any point on the line 00*. By a known formula it is easy to 
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demonstrate that 

(27) K/K* « * /¥ , R/R* = \n~i,n-i,Vn-i,n-i, 

and therefore that 

(28) 1 = ( ) 
K*\RJ 

Hence we have the following theorem. 

THEOREM. Let Vn-\> V*-i be two hypersurfaces in a space Sn of n 
dimensions having a common tangent hyperplane tn~i at two ordinary 
point 0, 0* ; K, K* the curvatures of the hypersurfaces Fn~i, Fnli at 
the points 0, 0*; and R, R* the curvatures at the points 0, 0* of the 
plane sections of the hypersurfaces Vn-i, V*-i made by the plane of the 
line 00* and the normal to the common tangent hyperplane tn-i at any 
point on the line 00*. Then (K/K*)(R*/Ryn+1)/Z is a projective in
variant associated with the hypersurfaces Vn-i, V*~i at the points 0, 0*. 

CHAPTER II. Two HYPERSURFACES WITH DISTINCT TANGENT 
HYPERPLANES AT TWO ORDINARY POINTS 

4. Derivation of invariants. Let Vn-i, Fwti be two hypersurfaces 
in a space Sn of n dimensions such that the tangent hyperplanes 
/n-i, /nt-i at two ordinary points 0, 0* are distinct, and the common 
tangent flat space tn-i of /n-i, t£Li contains the line 00*. If we choose 
the points 0, 0* to be the vertices (0, 1, 0, • • - , 0), (0, • • - , 0, 1, 0) 
of a homogeneous projective coordinate system of reference, and the 
tangent hyperplanes tn-u t*~i to be the coordinate hyperplanes #i = 0, 
Xn+i^O respectively, then the power series expansions of the hyper
surfaces Fn-i, Fnt-i in the neighborhood of the points 0, 0* may be 
written in the form 

X\ » ... 00% Xk 

(29) Fn-x: E /« + • • • , 
#2 t,fc-3 #2 #2 

* Xn+1 ™ Xi Xk 
(30) Vn-.ll » 2J mik h • ' ' • 

X% i,k*c*\ Xn Xn 

Considering the most general projective transformation of co
ordinates which shall leave the points 0, 0* and the hyperplanes /w_i, 
tjLi unchanged, we may easily show as in §1 that the quantities 

LMlnnfn22 /M\n~z / Ln+itn+im22\n+l 

i»+l ,»+ltf l l \L J \ Mulnn ) 

Vn-.ll
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hz 
^43 

ln-fl 

hi 

lu • 

L,3 /n+1.4 * 

• h,n+l 

' h,n+l 

' * ln+l,n+l 

, M = 

W H /W12 

W21 W22 

ntn-1,1 Pln-1,2 * 

• /»l ,n~l 

• • m2,n- l 

• • W n - l , n - l 

are projective invariants determined by the neighborhood of the second 
order of the hypersurfaces Vn-if V»*-i 0/ /Ae points 0 , 0*, wAere Lw+i,n+i» 
Afn are respectively the minors of /n+i,n+i, mix in the determinants 

Z,= 

and L', M', Ln+i,n+i, Mn are denoted by similar expressions. 

5. Projective characterizations of the invariants I , / . By suitable 
choice of the system of reference the invariants I , J of equa
tions (31) can be simplified. In fact, if we choose n—1 vertices of 
the system in the common tangent flat space £n-2, and the other two 
On+i(0, • • • , 0, 1), 0 i ( l , 0, • • • , 0) respectively on the polars t> t* of 
the flat space ^-2 with respect to the asymptotic hypercones of the 
hypersurfaces Vn-i, Fn*Li at the points O, 0*, the invariants I , / then 
take the simple form 

I — lnnln+l,n+ï?num>2Z> 

(32) ^ /Ln+i,n+A* / mn y ~ 3 /W22V+1 

* tnn / 

^ /zn4.ltn+iy/ mu y-»/ ' 

It should be noticed that the invariant J is reduced to 1 as n = 3. 
The polars 2, /* determine a space 53, which intersects the hyper

surfaces Vn-u V*~i in two surfaces 5, S*. These two surfaces 5, S* 
are evidently in the class considered by Buzano and Bompiani, and 
the corresponding invariant may be easily found from Bompiani's 
note [ l ] to coincide just with the invariant I . Thus we reach the 
conclusion : 

The invariant I associated with the hypersurfaces Fn-i , V£-i at the 
points 0 , 0* is the invariant of Buzano at the points 0 , 0* of the surfaces 
5, 5* in which the hypersurfaces Fn-i , V*~i are intersected by the space 
Sz determined by the polars t} t*. 

To characterize projectively the other invariant / we consider any 
hyperplane x« through the common tangent flat space /n~2: 

(33) xn+i =* ctxi (a 7* 0), 

which intersects the hypersurfaces Vn-i, V*~i in two hypersurfaces 
Fn-2, Fnt.2 of w — 2 dimensions. Since these two hypersurfaces Fw-2, 
V*~2 have a common tangent hyperplane at the points Ot 0* we may 
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determine an invariant, denoted by /« , as in §1: 

(34) ƒ « a*(n-8)/3 ( ) # 

Mil \ / n n / 

On the other hand, it is useful to consider the hypercones 
C, C* projecting respectively from the vertices Oi(l, 0, • • • , 0), 
On+i(0, • • • , 0, 1) the asymptotic hypercones at the points 0 , 0* 
of the hypersurfaces Vn-i, Vn*-i. These two hypercones C, C* deter
mine a pencil of hyperquadrics in the space Sn, among which there 
exist n-~ 1 hypercones, two of them being C, C*. The line 0iOn+i 
intersects each of the other n — 3 hypercones in a pair of points. Let 
Qi (i = l, • • • , n — 3) be any one of each pair of these points, P the 
point of intersection of the line OiOn+i with the hyperplane x«, and 
Di the cross ratio of the four points Oi, On-fi, (?»> P on the line 0i0n+iî 
then it follows that the invariant J can be expressed in terms of the 
invariant Ia and the n — 3 cross ratios Du JP2, • • • , A»~* as follows: 

(35) / - l[(DJ)% • • • £>n-8)
2. 

6. Metric characterizations of the invariants J, / . For the purpose 
of rinding simple metric characterizations of the invariants 7, / , we 
choose an orthogonal Cartesian coordinate system in such a way that 
the point 0 is the origin, the line 0 0 * is the Xn~i-axis, and the tan
gent hyperplane tn-i is the coordinate hyperplane -X"i=»0. Then the 
power series expansions of the hypersurfaces Vn-u V*~i in the neigh
borhood of the points 0, 0* may be put into the form 

n 

2_, \ikX{Xk + • • • > 
t,JU-2 

n—2 n—2 
pXi + S VikXiXk + 2 ]T) int»-iXi(X*-.i — h) 

»,&»i *~i 

+ / /n- i ,n- i(I„-i — h)2 + • • • , 

where h is the distance between the points 0 , 0*, and /x=«cot c*>, o> 
being the angle of the tangent hyperplanes £n_i, tjLi* 

In order to express the two invariants J, ƒ in terms of the coeffi
cients of expansions (36), (37) we have first as in §3 to consider the 
homogeneous coordinates y0t yi9 • • • , yn of a point defined by for
mulas (15) and the most general projective transformation of coor
dinates, which shall leave the point 0 and the tangent hyperplane 
f„-i invariant and carry the point O* and the tangent hyperplane 
t*-\ into the vertex (0, • • - , 0, 1, 0) and the coordinate hyperplane 

(36) Fn_x: X x -

(37) 
F - i : Xn~ 
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yi — O of the new coordinate system respectively. An easy calculation, 
which shall be omitted here, suffices to demonstrate the result as 
follows: 

( 3 8 ) j , y * ^ ^ ^ , / 
W WnXn_i,n_J ' 

X22 

X32 

Xn2 

X23 * 

X33 * 

Xn3 ' 

' Xjn 

# X3n 

• x n n 

, * « 

Mil 

M21 

M n - 1 , 1 

M12 

M22 

1,2 * ' 

* Ml , 

• M2, 

n-1 

n—1 

- l , n - -1 

where $*,», ̂ n denote respectively the minors of X„n, Mn 'm the de
terminants 

$ = 

Finally, we shall make use of the normals ON, ON* at the point 0 
of the common tangent flat space £„-2 in the tangent hyperplanes 
tn-i, *n*-i. Let K2, K? be respectively the curvatures at the points 
0, 0* of the plane sections of the hypersurfaces Fn-i, Fn*Li made by 
the planes 00*N*t 00*N. Further, let Kni K? be the curvatures of 
the hypersurfaces Vn-u V*-\ at the points 0, 0*; and ÜTn--i, K^i the 
curvatures at the points 0, 0* of the hypersurfaces Vn-2, V^-2 of 
n — 2 dimensions in which the tangent hyperplanes /n1i, /n-i intersect 
the hypersurfaces Fn-i, Vn*Li respectively. Then 

Kn « 2-1$>, J C = 2w~ i(i + M2)-(rH- i)/2*, 

(39) £ n _ i = 2 - 2 ( l + M2)(n~2)/2$>«n, £ - 1 = 2 - * ¥ n , 

£ 2 = 2(l+M2)1 / 2Xn-l ,n~l , 2^2 : 2/i, n—l,n—1» 

and hence we arrive at the following metric characterizations of the 
invariants I, J: 

(40) I = — 
K„KfKtKf 

16 Kn-iK*.! sin^-^cö 
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