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Introduction. Convex curves in the plane and convex surfaces in 
space have many at first sight unexpected regularity properties.1 The 
stringency of the convexity condition makes it desirable to find a 
geometric property of convex curves or surfaces which has similar 
analytical implications but applies to a wider class of geometrical 
objects. The first and most studied generalization of convexity is 
finiteness of the order: a curve or surface is said to be of order n 
if its intersection with any straight line consists of at most n con­
nected sets2 (segments, points, or rays). However, this condition 
proves to be much too weak.8 On the other hand, the dual condition, 
finiteness of class, will turn out to be more restrictive than necessary. 

The present paper will show that for curves finiteness of the total 
curvature is an entirely satisfactory condition. It includes in particu­
lar all curves of finite class. More generally, hypersurfaces in En with 
finite total curvature seem to share the most important differentiabi­
lity properties with convex hypersurfaces. 

The present results on curves with finite total curvature and the 
modern theory of functions of a real variable lead to the following sur­
prising fact concerning surfaces in E3 : If the paratingens4, of $ at a 
given point p leaves out at least one line L, and if, locally, the plane sec­
tions of $ parallel to L have uniformly bounded total curvature, then the 
following facts hold simultaneously at almost all points q of $: the sur­
face <£ has a tangent plane U at q. All plane sections (?^II) of <E> through 
p have a curvature? at p, and these curvatures satisfy the theorems of 
Meusnier and Euler. 

Received by the editors April 13, 1945. 
1 For curves compare Jessen [l] , for surfaces Busemann-Feller [ l] , and for hyper­

surfaces Alexandrov [l ]. Numbers in brackets refer to the references cited at the end 
of the paper. 

2 This formulation is due to Hjelmslev [2] and has the obvious advantage not to 
exclude polygons, polyhedrons, ruled surfaces, • • • . 

8 Compare Marchaud [l], Haupt [l], and §2 of the present paper. 
4 This concept is due to Bouligand, see Bouligand [l] . The paratingens of $ repre­

sented parametrically by p(u, v) at (u0, v0) consists of all non-oriented lines G which 
are limits of sequences of non-oriented lines G(p(ui, vi), p(uv, vv)) with (ul, v'v) 
7* (uVl vv) and u[ , uv-*uo, v'v, »,—H>0. For the definition of total curvature see the fol­
lowing §1. 

5 More precisely the ordinary curvature as defined at the end of §1. 

583 



584 H. BUSEMANN AND W. FELLER [August 

I t will be seen that the hypotheses can be somewhat reduced. Theo­
rems (4.5) and (4.8) are believed to be of interest for the theory of 
real variables. 

1. Curves of finite total curvature. For a^t^b let the point 
p(t) — (x(t), y(t)) of the (x, ;y)-plane describe a continuous curve C 
which is locally a Jordan arc : that is to say, for every t0 let there be an 
V(to) >0 such that the mapping p(t)—>t is topological for | / — /0| Sy(to), 
or a^t^a+7](a)f or 6 — rj(b) g / ^ 6 , 6 respectively. 

The oriented straight line G is called a paratangent of C at t0 if 
there exist sequences ti-^to, t" —>to with t{ <t" and such that the 
oriented line G(p(ti), p(ti'))^G(ti, ti') tends to G. If, in particu­
lar, the two sequences can be chosen so that ti Sto^t", then the 
paratangent G is called a tangent of C a t tQ. If ti' Sh W = 20),then 
G is called a left-hand para tangent (tangent) of C at /0; right-hand 
tangents and paratangents are defined similarly.7 

(1.1) The paratangent (tangent) of C at t0 is unique if and only if the 
onesided paratangents (tangents) of C at tQ are unique and coincide. 

The statement is obvious, but it should be noticed that it holds 
only for oriented tangents and paratangents. 

The mean value theorem holds for these tangents in the following 
form : 

(1.2) If h < fa and p(h) îépfa), then a value to between h and U exists 
such that a suitable tangent of C at t0 is parallel either to G+ = G(/i, fa) or 
to its opposite orientation G~~.8 

A loop joining two points (for example, a strophoid) will show that 
a tangent parallel to G+ need not exist. The statement (1.2) is easily 
proved by considering the points of C for which the distance from G+ 
is maximal. 

For every 0, 0^<£<27r, define N(<j>) (possibly iV(<£)=<x>) as the 
number of values / for which a tangent of C at t forms the angle <f> 
with the positive x-axis. If N((f>) is summable, K=JlrN(<t))d4 is called 
the total curvature of C, otherwise put K = oo. 

If the tangent T(t) of C is unique for every / and varies continuously 
with /, then the end point of the unit vector with origin (0, 0) and 

• The end points will frequently require similar obvious changes, but these will in 
general not be mentioned. 

T One-sided tangents or paratangents will be used as common word for right-
hand and left-hand tangents or paratangents. 

8 For curves given in the form y =*ƒ(*) this result (compare (3.1)) is due to Hjelm-
slev [ l ] . 
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parallel to T(t) traverses a continuous curve on the unit circle whose 
(finite or infinite) length equals K.9 This justifies the above nomen­
clature. I t will now be shown that curves of finite total curvature have 
an important property of convex curves. 

(1.3) THEOREM. A curve of finite total curvature has everywhere unique 
one-sided paratangents. 

Suppose that there exist two left-hand paratangents T' and T" 
at t0. Then at least one of the two angular intervals between T' and 
T" has the property that to every line L contained in it there exist 
infinitely many chords of p(t) parallel to L. By the mean value theo­
rem there exist therefore infinitely many points U—^t such that a 
tangent a t U is parallel or opposite to L. Therefore, for every <f> of 
one of the two angular intervals between T' and T" either N(4>) = <*> 
or N(— <f>) = oo so that N(<j>) can not be finite almost everywhere. 

For any curve C let to be a value for which the one-sided para­
tangents are unique. Then it is easily seen that the paratingens of C 
at to, that is, the set of all paratangents at t0, is determined as fol­
lows : Let T\ and T% be the two one-sided paratangents, T{ and T{ 
their positive subrays with origin p(t0). Then either the angle be­
tween T{ and Ti has measure 7r, in which case the paratingens is the 
whole plane and we say that C has at to a cusp] or T{ and T{ bound 
exactly one angle of measure œ(t0) <TT. This closed angle together with 
its vertical angle form the paratingens of C a t to whose measure is 
defined as co(/0). 

The importance of the last theorem is shown by the following sim­
ple facts : 

(1.4) If the curve C: p(t), a^t^b, has everywhere unique one-sided 
paratangents then : 

(a) Every paratangent of C is a tangent. 
(b) If tv~-±to — 0 and Tv is a tangent of Cattv, then Tv tends to the left-

hand tangent of C at to-
(b ;) If tP—>to, and the tangent T of C at to is unique, then TV—>T. 
(c) For every t] > 0 the set of those values tfor which co(to)>v is finite. 
(c') The number of t's for which the paratangent of C is not unique 

is at most countable. 

T o s e e ( a ) l e U ; <U' and / / ->/ 0 , *"-»/<>, GW, U')-+G. II ti Sh^ti' 
for infinitely many v nothing is to be proved. If // t*ti' ^t0f then 

• This is a geometric formulation of a known theorem in the theory of real varia­
bles; compare, for example, Saks [ l ] . 
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G(t!, ti' ) tend by hypothesis to the same limit as G{fi, *0)> so that C 
is a tangent. 

To prove (b) choose // and ti' with ti SU^ti' <t0 such that 
0<ti' -ti <\/v and the smaller angle between G(ti,ti') and T, has 
measure less than \/v. Then //—»/0 and G(ti, ti') tends by (a) to the 
left-hand tangent of C a t *<>• 

If (c) were not true, then a sequence /„ with «(/„)> r? would exist. 
I t may be assumed that /„—•/o —0. The two one-sided tangents of C 
at t9 tend by (b) to the left-hand tangent of C at t0, which contradicts 
the hypothesis o)(tv) > rj. If C has the finite total curvature K, the state­
ment (c') may be improved to 2 « ( / F ) ^/c, where the tv are the values 
of t where the paratangent is not unique. In particular, there are 
fewer than K/TC cusps. 

The uniqueness of the one-sided paratangents allows us also to as­
sociate with every tangent T of C a t t an angle yp{t) between the tan­
gent and the positive #-axis fy(t) not necessarily between 0 and 2TT) 
which, although multivalued, varies with / in very much the same 
manner as when C has a continuous tangent; let T I < T 2 < • • • < r r 

denote the cusps of C; and put a = r o , b=Tr+i* Then r 0 < r i , rr<Tr+i. 
Consider a subarc C t: r ^ / ^ r < + i of C. Define as tangents of C% at Ti 
and r»+i the right-hand and left-hand tangents of C at r» and r t + i , 
respectively. By (1.4b) there is for every r, T , ' ^ T ^ T < + I , a 5 ( r )>0 
such that the smaller angle between any two paratangents of C for 
\r-t\ <5 ( r ) ( 0 g r - r < < 5 ( r < ) , O g r w ~ r < S ( r t + i ) ) is less than w. A 
finite number of these intervals belonging to values t\~Ti<h< • • • 
</«ia=r<+i will cover the interval (r<, r<+i) so that only consecutive 
intervals (/,• —1\ <5(r») have common points. If we fix the value 
yp(ri)~\l/{h) arbitrarily, then the angle \f/(r) belonging to all t in 
I /i—/1 <Ô(T{) is uniquely determined by the requirement that 
|^(/)—^(r») | <7T. The same requirement and the already defined 
value of \f/{t) for common points of \k — t\ <ô(/ t) , i = l, 2, determine 
\f/(t) uniquely for |/2~**| <ô(22). Continuing in the same way one de­
fines \(/(t) for all t on C». Notice that ^ ( T * + 0 ) = ^ ( T < ) and ^ ( r t +i~0) 
= ^(Ti-fl) . 

Now choose\fs(a) so that 0 Hyp(a) <2r. Then the angles \[/(t) are de­
termined for aSt^Ti. As values ^ ( n ) take those with ^ ( r i ~ 0 ) ^ ( T I ) 
^ ( r i - - 0 ) + 7 r . As initial value on C\ choose ^ ( n — 0)+7r, then t^(/) 
is determined on C2, and so forth. A consequence of this determina­
tion of \}/{t) is that for any t the limits \f/(t — 0) and \f/(t+0) exist and 
that for any \p{t) belonging to / either 

(1.5) M-0)S*(0S*(/+0) orM<-O)fcW0èM+O). 
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(1.6) If C has total curvature K, then for any a ~h<t%< • • • </„«=} 
and any choice of the values \[/(ti) 

*(<m) I £ Z I *(* + 0) - *(<*fi - 0) | 
+ £|iKfc + o)-*(*«-o)|. 

Now ^(0 takes on every value between ^(/»-+0) and ^(/<+i — 0) at least 
once in (/»•, /t+i) and every value between ^(/» —0) and ^(/»+0) exactly 
once at /», which proves (1.6). 

Let dt Tt^/^Tt+i, denote the same subarc of C as above. For 
every r0 the paratingens of C» at to leaves out at least one line L'. 
Choose the perpendicular L to L' as an #'-axis and L' as a y'-axis. 
Then for a suitable S>0, the subarc |/o~^| ^ 5 has a representa­
tion y'=ƒ(#')> — §iâ# 'âô 2 , ô t>0, and the difference quotients 
(f(x{)—f(xi))/(xl — xl) are bounded10 in (—Si, 52), since the para­
tingens of C at to is a closed set. Therefore the arc |/o~1\ :gS of C 
has the finite length Ji2

h {1 +f'2(x')} 1/2dx'. A trivial application of the 
Heine-Borel theorem yields that d has finite length, so that C is 
also rectifiable. Introduce the arc length 5 as parameter on C, and 
let if/(t) become the function <t>(s). Let <t>*(s) denote any of the values 
<l>(s). Then 0*(s) has by (1.6) bounded variation so that <£*'($) exists 
for almost all s. If #(s) denotes any other value of 0(5), then because 
of (1.5), <?'(s) exists and equals <f>*'(s) whenever <t>*'(s) exists. There­
fore we shall simply speak of <£'(s). Whenever <£'(s) exists, the tangent 
T(s) of Cis unique. 

The geometric equivalent to the existence of <j>'(s) is this: Let v(s) 
be the normal to T(s) at p(s), and denote by v(s +h) the normal to 
any tangent of Cat (s+h), and by d8(h) the distance (possibly 00) of 
the intersection of v(s) and v(s+h) from p(s). Then l/d8(h)-~>| <£'($) j , 
and I c/>'(s) I is the so-called strong curvature of C at s. 

(1.7) A curve of finite total curvature has almost everywhere (with re­
spect to the arclength s) a finite strong curvature. 

The (ordinary) curvature of C at a point s where C has a unique 
tangent T(s) is defined as follows: Let r8(h) denote the radius (pos­
sibly 00) of the circle which has tangent T(s) at p(s) and passes 
through p(sJrh). If l/r8(h) converges, then the limit is the curvature 

For by (1.5) 

10 Compare Bouligand [l, p. 123]. 
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of C a t s. For any curve the existence of the strong curvature 
lim (l/d9(h)) implies the existence of the curvature lim (l/rt(h)); 
for convex curves the converse holds.11 This is not necessarily true 
for curves of finite total curvature. 

2. Examples. Before passing on to surfaces, we exhibit three ex­
amples of curves, (a) We show that curves of finite total curvature are 
really essentially more general than convex curves. This will be ac­
complished by constructing a curve with N(<t>) ^ 3 which is not the 
union of a countable set of convex arcs and a set of measure 0. (b) We 
prove the statement at the end of §1. (c) We show that finiteness of 
the order is not an adequate generalization of convexity. 

Let Ki, 1C2, • • • be any finite or countable number of closed disjoint 
subarcs of a semicircle /c. Denote by ni the image of KV under the re­
flection in the line G(avi bp) connecting the end points a„ bv of K„ and 
replace KV by KI for every v. The curve C' thus obtained from K has 
N(<t>)£3. If the Kp are chosen so that the set K — ̂ K , is a nowhere 
dense subset of K with positive measure, C' will not be the union of a 
countable number of convex arcs and a set of measure 0. 

I t requires a little more to find an example for (b). With the same 
notation as before but arbitrary KV take a subarc K* of K! whose end 
points ai and hi are close to but different from av and bVi respectively, 
and replace K* by its image K" under reflection in G(a!, hi). For the 
curve C" thus obtained from C' the function N(cj>) is at most 6. 

Now let K be the semicircle x^O of the circle x2+y2~l, and E 
any curve which passes through (0, 1) and lies except for (0, 1) en­
tirely in the unit circle and has there y = l as tangent, and curva­
ture 1. Then any curve between K and E through (0, 1) will have 
curvature 1 at (0, 1). Now choose a„ = (cos (TT/22"-1) , sin (Tr/22"-1)), 
bP = (cos (7r/22p), sin (x/22")) and ai and bi so close to av and bv that 
the arc ni' lies between K and E. Then C" has curvature 1 a t (0, 1). 
But it does not have a strong curvature at (0, 1); for a parallel Pv 

through av to the radius of K from (0, 0) to bv is a normal to C" a t a„. 
The equation of Pv is y - s i n (TT/22"-1) = tan (7r/22,0(tf-cos (TT/22"-1)) , 

hence Pv intersects the x-axis, which is the normal to C " at (0, 1), at 

sin Or/S2*-1) 
*, « cos (TT/2"-1) - 7 ' - - 1. 

tan (T/22V) 

Curves of order 3 are the union of at most 4 convex arcs12 and 
have therefore all differentiability properties of convex curves. 

11 See Jessen [ l] , 
12 See Marchaud [l, p. 88, Théorème IV]. 
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Haupt l s constructed an example of a curve of order 4, where at a 
set /i of positive measure the paratingens is the whole plane. The 
strong curvature can, of course, not exist at any point of /x. An ex­
ample of a curve of order at most 8 with the same properties can easily 
be constructed as follows: With the above notations choose the K„ 
again so that K—^K,, 'ls nowhere dense and has positive measure. 
Construct a semicircle kv with two suitably chosen points c„ dv of K9 

as end points such that kv is contained in the circular segment Sv 

bounded by /c„ and the chord from av to bv. Let Ü be the curve obtained 
from K by replacing the arc from cv to dv by ic¥. Since any straight line 
intersects at most two segments 5„, and has at most 4 common points 
with the subarc of U in S„ it follows that V has at most order 8 (ac­
tually it has order 6). The paratingens is the whole plane at every 
point of K—^,KP. If the corners of Ü at cP and dy are smoothed off by 
changes taking place in a sufficiently small neighborhood of cP and d„ 
a curve C' is obtained, where the tangent exists and is continuous, 
hence the paratingens is everywhere a straight line, but the strong 
curvature exists at no point of K — ̂ KV. The question whether a curve 
of finite order has almost everywhere an ordinary curvature is open. 

3. Auxiliary facts on real variables. The results of §1 can be applied 
to surfaces * : p(u, v) = (x(u, v), y(u,v), z(u,v)), — oo <uf v< oo, in a 
Cartesian (#, y, z)-space with the following properties: 

I. For every pair (u0, v0) there is a ô(w0, i>o)>0 so that the mapping 
p(u, v)—>(w, v) is topological f or \ u — Uo\ < 8 and \v—v<\ < 8 . 

II. For every (w0, *>o) there is at least one line L not contained in the 
paratingens14 of $ at (w0, flo). 

III. There is a positive 5' g 5 such that planes parallel to L intersect 
the part \ u-~u0\ g 5', | ẑ  — ̂ 0j g S' of <ï> in curves of uniformly bounded 
total curvature. 

Some observations to explain the content of conditions II and III 
are in order : 

There is a positive ô* g S such that with L as z'-axis and the plane II 
perpendicular to L as (x', ;y')-plane the part | u — u0\ <ô* f J «; — z;0| <S* 
of $ is represented in the form z ' = / ( ^ ' , y')» where (#', y') traverses 
some open set T in II containing x' = 0, y' = 0. Clearly the number 5* 
may in addition be chosen so that the difference quotients are 
bounded, that is, 

I ƒ(*/, * ' ) -ƒ (* ' . yi)\/{W- x{y + (y{ - yOf}1/f < M 

13SeeHaupt [ l] , 
14 See footnote 4. 
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for (xi, y I ) <EI\ The planes parallel to L intersect therefore for ô' < ô* 
the part \u—u0\ ^§S', \v—v0\ g S' of $ in Jordan arcs of the form 
p(u(t), v(t)) so that the concept of total curvature becomes applica­
ble. The set |w—w0| < S ' , |*> —*>o| < S ' corresponds to an open set T' 
in II which contains # ' = (), ;y' = 0. Therefore an 77>0 exists such that 
thedomain \x'\ <rjt \y'\ < rj is contained in I " ; it corresponds to some 
open set A containing (u0, v0) in the (u, î/)-plane. 

This leads to a function ƒ(#', y') with the following properties: 
(a) f(x', y') is defined and continuous for \x'\ ^77, \yf\ Sy* 
(b) \f(x{,yO-f(xi3yi)\/{(x{ -x{)*+(y{ -yiW^MK*. 
(c) All sections ax'+by'+c — Q with z'~f(x', yr) have total curva­

ture less than K < co. 
Before proceeding to prove the result mentioned in the introduc­

tion, some facts on functions of a real variable will be recalled. Let 
f(x) be defined and continuous for a^x^b. The mean value theorem 
(1.2) becomes then:9 

(3.1) If atj*Xi<X2^b then an XQ between x\ and x2 and a tangent of 
y —fix) (tangent in the above sense) at x0 exist whose slope f*(x0) satisfies 
the relation ƒ* (x0) = {ƒ(#2) — ƒ(* 1)} / {#2—xi}. 

The first and second Schwarz derivatives D'f(xo) and D'ff(x0) of ƒ 
at Xo are defined by 

Dff(x0) = lim — ; 
»-+o 2 h 

iv/// N v f(*<> + h) + f(x0 - h) - 2f(x0) 
Is f(xo) = lim 

n-+o h2 

If f'(xo) exists, then DJ(x0) exists, but not conversely. However,15 if 
D'f(xo) exists in a set of positive measure E then ƒ'(a;) exists almost 
everywhere (a.e.) in E. 

Let the difference quotients oif(x) be bounded by M and let the 
total curvature of y~f(x) be at most K. lîf*(x) denotes the slope of 
any tangent of y =ƒ(#) at x, it follows from §1 that f*(x) has variation 
V^K(1 + M2)1/2. The derivative/ '(#) exists a.e. in (a, b). At all points 
where f'(x) exists, the existence of f*'(x) for one function f*(x) im­
plies the existence of the derivative for every other slope function, 
and the derivatives are equal; they will be denoted by ƒ"(#) . 

x* This is a special case of the general and deeper theorem of Marcinkiewicz and 
Zygmund [l ] that the existence of thefcth Riemann derivative oîf(x) in a set E of posi­
tive measure implies the existence a.e. in E of the fcth de la Valée Poussin derivative, 
because the &th Riemann derivative coincides for k •» 1, 2, with the Schwarz derivative. 



i945l REGULARITY PROPERTIES OF A CLASS OF SURFACES 591 

If ƒ"(*) exists then D"f(xo) and the so-called second de la Vallée 
Poussin derivative 

d"f(xo) - tea-T j 7 / (*>)ƒ 

exist and equal f"(x0). The existence oîf"(x0) and d"f(x0) are equiva­
lent to the existence of the strong and ordinary curvatures of y =ƒ(#) 
a t #o16 respectively. 

d"f(x) may exist in a set £ of positive measure, without f"(x) exist­
ing anywhere in E.17 If dnf{xo) exists, then D"f(xQ) exists but not 
conversely, however :15 

(3.2) If D"f(x) exists in a set E of positive measure, then df/f(x) 
exists a.e. in E. 

If ƒ (x, y) is defined and continuous for \x\ ^rj, \y\ ^ rj all these con­
cepts can be applied to derivatives of f(x, y) in a given direction a 
and lead to concepts like/a*(#o, yo), ƒ«' (*o> yo), DJf(xQ} y0), f I' (#0, y0), 
DJ'f(xo, yo) and d«"/(#o, yo), where, for example, 

Daf(xo, yo) » lim — {/(#Q + A-cos a, y0 + A-sin a) 
2A x 

— f(x0 — Acosa , y0 — A s i n a ) } , 
, , „ x ,. 2 (f(xo + A-cos a, y0 + A-sin a) - ƒ(*<>, yo) 

da f(xo, yo) = lim — < -

- f«(xo, y o ) | . 

For fixed a the set where any one of these derivatives exists is meas­
urable. 

For any interval I: x' <x<x", y'<y<yn put 

Hi, f) - ƒ(*', yO + ƒ(«", y") - ƒ(*'. y") - ƒ(*". y'). 
The variation of f in the rectangle 5 : | # | < 5 , \y\ < 5 is defined as 
V(f, S) = sup [iy] X) | A(^> ƒ) I where [/J traverses all finite sets of non-
overlapping intervals in 5 . To establish V(f, S) :g jlf it suffices to show 
F(f, S ' X J I f for every rectangle 5 ' : | * | < 8 ' < 8 , | y | < 5 " < 5 . If 
V(f, S) is finite, ƒ(#, y) is called of bounded variation in S in the sense 
of Lebesgue. According to a fundamental theorem of Lebesgue18 

V(f, S) < » implies tha t almost everywhere in 5 
11 Compare Busemann-Feller [l, p. 7]. 
"SeeDenjoy [ l ] . 
11 See Lebesgue [l] or Saks [ l ] . 
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(3.3) lim A(J„ ƒ) / 1 1 , | - F(xo, y»), \ I , \ - area of I„ 

exists and is finite, provided (#0, yo)Çz7* and the sequence {/„} is 
regular, that is, if hv and kv are the sides of /„, then 

h, A, 
(3.4) 0 < lim inf — <t lim sup— < oo. 

Ky Ry 

4. The existence of the second differential. After these prepara­
tions we show first : 

(4.1) If f is defined and continuous f or \x\ ^ S , \y\ ^ 5 and if f or 
some a, 0 <a <ir/2> the slopes of the sections x sin a ± y cos a = const, of 
z=f(x, y) have variation at most B, then f(x1 y) has in S: \x\ <S, 
\y\ < 5 at most variation 2SJ3/cos a and z~f(x> y) has a tangent plane 
a.e., that is> the derivatives f'/ exist simultaneously f or all j8 and 

(4.2) / ;= /o ' cos /3+/ ; / 2 s in /3 . 

PROOF. For given ô', 5"<5 choose a rational number r~p/q so 
that S"^r§'- tan a < S . For any N that is divisible by q let / ^ denote 
theinterval[(M~l)/ iV-l]ô ,<^<(iu/ iV r- l )5, {(*>-l)/iV-r} Ô'tana 
<y<(v/N-r)hf tan a, /i = l, • • • , 2N; v=*l, • • • , 2Nr~N'. Then 
the diagonals of 1%, are along lines x-sin a±3/-cos a = const. Since 
ƒ(#, ;y) is continuous it suffices to show that 

2N,N' 

(4.3) £ I A(JMp, ƒ) I g 2h'B/cos a for every 2V divisible by q. 

Let £„„(*, *) denote the point x = 8'[(2fi-l-2N+s)/(2N)], y 
=> S' tan a[(2v-l-2rN+t)/(2N)] so that £M,(0, 0) is the center of 
ƒ£. Then 

A(/?„ ƒ) = {[ƒ(&.»(!, 1)) - ƒ(&,((>, 0))] - [f(pU0, 0)) 

- ƒ(&,(- 1, - 1))]} - {[/(fc,(l, - 1)) - ƒ(#„.(<>, 0))] 
- [/(iUO.O))-ƒ(ƒ>„,(- 1,1))]}. 

Hence by (3.1) 

à(£,f) = («7(2^cosa)){/r(^(fl l , 01)) 

-ftiPU- 0s, - *2))} - (*7(2ff cos «)) 

• \f-JtU*. - e*)) -/-«(PU- e*, «*))}, 

file:///f-JtU*
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where O<0*<1 and the 0i depend on jx and v. Therefore 

2N.N' 22V 

£ I A(/„„ ƒ) I £ (&'/(2N cos «)) £ £ | ƒ.*<#„(*, 91)) 
Mi?»! X = l M—»*—X 

+ (d'/(2N cos a)) E Z I f.*(PU*. - 9e)) 

X==l M+^^X 

- / - • ^ ( - » 4 . « 4 ) ) | . 
Since the variation of ƒ* « along the lines #-sin a ± y c o s ex = const, 
is at most B and JU — Z>=X implies that pMy(01

r 6l) and p»y( — d2, — d2) 
lie on the line x- sin a — y cos a = ô X —sin a —r»cos a the relation (4.3) 
follows. 

The derivative ƒ«'(#, y) exists a.e. along a fixed line a - s i n a 
—y -cos a = const. Since the two-dimensional set where ƒ« exists is 
measurable, it follows that ƒ« (x, y) exists a.e. in \x\ g 5, \y\ sg ô. De­
note by iVi the set of measure 0 in S where either ƒ« or fia or the set 
derivative F(x, y) of ƒ(#, y) does not exist. If (x0t ^ o ) G 5 - N i and 
& = /t-cos a, Z = A«sin a, then 

^(*o, yo) = lim — {f(x0 + k, y0 + I) + /(*0 , yo) 

,, ,N - /(*o + k,y) + f(xo, y0 + 0 
(4.4) 

= lim — { - f(xo + k, y0 - /) - f(x0, yo) 

+ f(x0 + k, y) + f(x0, yo - 0 } . 
Hence 

2F(x0> yo) = lim (£ sm a ) - 1 < 
I h 

f(xQ + k, yo - 0 - f(xo, yo) 

2 sin a 

h 

f(xo, yo + 0 - /(so, yo - 01 
2/ J 

The first two terms in the braces tend to ƒ«' (xo, yo) and f!~a(xo, yo) re­
spectively, therefore the last term converges, tha t is, D^fi*** yo) 
exists. Similarly Dóf(xo, yo) exists. I t follows from the last section 
tha t /o and/i/g exist a.e. in S—Ni, so that /o ,/*/2>/±« and F exist in 5 
except for a set N2DN1 of measure 0. 



594 H. BUSEMANN AND W. FELLER [August 

Let (*o, yo)Ç~S-Ni, 0<j3<7T, /3^TT/2, and put A-cos j3=ft, 
h's'm 0 = /. By transforming (4.4) it follows that 

F(x0i yd) » lim (Z*-sin /S cos /3)-1 <— (/(#0 + ft, yo + 0 - f(*o, yd)) 

cos j8 
(ƒ(*> + ft, yo) - /(*o. yo)) ft 

sin 0 
(f(xo, yo + 0 ~/(*o, y0))>. 

The last part in the braces tends to —cos j8/0' —sin /?/^/2, hence the 
first part converges and (4.2) follows. 

This theorem leads to the following main result on functions 
f(x, y) for the present paper. 

(4.5) THEOREM. If f is defined and continuous f or \x\ ^ ô , \y\ gS, 
and if the slopes of the sections y = const, and x • sin a ± y • cos a = const., 
for some fixed a, 0 <a<ir/2, have variation at most B, then the following 
facts hold simultaneously almost everywhere in S (\x\ <ô, \y\ <Ô). 

(1) The set derivative F(x, y) of f(x, y) exists. 
(2) z=f(x, y) has a tangent plane. 
(3) dp'f(x, y) exists for all j8 in the following strong sense: 

dj'fixo, yd) 

lim - ^ { " " " ' " '"''"'" ^ r' —ft(xo, yd)> 
(4.6) 2 (/(#o+^cos0, y 0 + ^ s i n ^ - / ( * 0 , yo) 

= _ l im — <• 
JMJ,ft->o h \ 

and 

(4.7) <tf'ƒ - di'/ cos2 0 + 2F-cos 0 sin /J + d'j* sin218. 

PROOF. By (4.1) and previous remarks the following statements 
are true except for a set N* of measure 0 : Si exists for all /3 and 
Si ĵfo cos j3+/r/2 sin /3; the derivatives i 0 " / and d±aS exist. It is im­
portant that in the first part of this proof only the existence of di'S 
is used and not the fact that the slopes of y = const, have variation 
at most B. Let (*<>, yo)£S—«Aft. Put /0(s, /) «ƒ(*<>+$» yo+Oi 
/o=/(0, 0)=/(#o, Jo) and ft=A-cos ce, Z = A-sin a. Then 

sin a cos aF(x0, yd) = lim Zr2{/o(ft, 0 + /o ~ ƒ<>(*, 0) - /(O, Z)} 

- l i m A - 2 { / o + / o ( - ft, - / ) 
- / o ( - * , 0 ) - ƒ • « > , - 0 } , 
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hence 

2-sin a cos aF(x0l yo) = lim {Zr2(ƒ<>(&, I) + ƒ<>(- *, — 0 — 2/0) 

- k~* cos2 a(fo(kt 0) + /o( - k, 0) - 2/o) 

- Z-2 sin2 a(/0(0, /) + /(O, /) - 2/0)}. 

The first two terms in the braces tend to DJ f—dj'f and —cos2 aD^'f 
= —cos2 adó'f y hence the last term converges, so that D"/2f(x0, y0) ex­
ists. By (3.2) the derivative d"/2f will exist except at the set NADN* 
of measure 0. 

Let (*0, yo)eS-Ni and jff-*/3*f then by (4.2) 

/jK*o, yo) = /ó cos j5 + fr/2 sin p-* fd*(xo, yo). 

If £ = &-cos 0, J=A-sin /SF, and 0 < J 3 * < T T , /3*5*TT/2, then the regularity 
condition (3.4) is satisfied for A—>0 and 0—>/3*. Therefore 

2 sm 0 cos j3F(*o, ?o) = _ l i m ^— I ; U ) 
e-+0*,h-+o \ h \ h / 

2 cos2 0/ƒ<>(£, 0 ) - / o . \ 

—r~v— i Mxo'yo)) 
2sin2g//0(0,Z) - / Q \ | 

j — I ^ A/«(*o, yo) ) | . 
The last part of the terms in braces tends to di'fixo, y0) cos2/3* 
+dx/2 sin2 j3*, respectively. Therefore the first part has a limit, which 
proves (4.7) for all 0* and (4.6) for j3*^0, x /2 . The proof fails for 
these two values because the regularity condition (3.4) does not hold. 

However, we now apply our result to the coordinate system 
£ = #-sin a / 2 + y - c o s a /2 , rç= — #-cos a / 2 + y - s i n a /2 . The lines y 
= const, and a;-sin a + y - c o s a = const, have then the equations 
£ • sin a /2 ± rj • cos a /2 = const. By hypothesis the slopes of these lines 
have variation at most B; moreover, it was proved that d"j exists 
along the lines r; = const. As was pointed out in the beginning, the 
first part of the proof used only the existence a.e. of d"f along 
y = const., hence it follows that (4.6) holds for all directions except 
those parallel to the £- or ry-axis; (4.6) holds therefore in particular in 
the direction of the old x- and y-axes. This completes the proof of 
(4.5). A simple application of (4.6) and (4.7) yields 

(4.8) COROLLARY. Under the assumptions of (4.5) the function f (x, y) 
has almost everywhere a second differential in the sense of Stolz, that is, 
the relation 
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f(x0 + h, y0 + k) = f(x0, yQ) + hfo\x, y) + kf*/2 
(4 9) 

+ {h2döf + Ih-kF + k2dl'l2f)/2 + o(h2 + k2) 

holds for almost all xQ, y0. 

Relation (4.9) implies that 

F(x, y) « lim {f(x0 + h, y0 + k) + f(x0, yo) 

- f(x0 + h, y0) - f(x0, yo + k) ) 

without any regularity condition. If fi and f^2 exist in a neighborhood 
of (xo, yo) it follows that the mixed partial derivatives d2f/dx-dy and 
d2f/dy*dx exist at (xo, y0) and equal F(xo, y0). A similar interpretation 
can be given to F(xo, yo) in the general case, however this question 
is alien to the geometric purpose of the present paper. 

The theorem of Euler on the curvatures of the normal sections of 
s = / ( # , y) a t (#o, yo) follows from (4.2) and (4.7) alone.19 In the pres­
ent case both the theorems of Euler and of Meusnier follow immedi­
ately from (4.9). For it follows from II of §3 that the paratingens at 
(#o, yo) does not contain the normal to the tangent plane II of 
z~f(xf y) a t (XQ, yo)* If (x, y, z) are new coordinates with II as 
($, ;y)-plane and (xo, yo) as origin, then z~f(x, y) will in a neighbor­
hood of (0, 0) = 0eo, yo) be represented in the form 2=/ (# , y). Then 
o((x—Xo)*+(y—yoY)'=1o{%2Jry2). The relation (4.9) is equivalent to 
the statement that f(x, y) coincides, in a neighborhood of (x0, yo), ex­
cept for o((x—xo)2+(y~-yo)2), with a paraboloid ai+a2x+azy+aiX2 

+a*xy+aty2. This same paraboloid written in the new coordinates 
will approximate z = ƒ (#, y) up to o ( (x—x0)

2+(y—y o)2) = o (x2+y2). In 
the new coordinates (4.9) reads as 

(4.90 ƒ(*, 9) - (**d'o'f + 2-*-J-P + fdr/2f)/2 + o{*2 + y2) 

from which it follows that 

(4.10) <#7(0, 0) - cos2 fidij + 2• cos 0 sin fiF + sin2 fidljj. 

But now dp"f(Q, 0) is the curvature of the section #-sin fi+y>cos j8 = 0 
with £=ƒ(#, y), so that (4.10) is Euler's theorem. 

Meusnier's theorem can easily be derived from (4.9') in the follow­
ing form (cf. Bouligand [l , p. 120]): Suppose that the surface 
z~f(x, y) has a second differential in the sense of Stolz (cf. (4.9)) 
at P = (#o, yo, f(xotyo)). Then any two curves on the surface with the 

19 Compare Busemann-Feller [l, pp. 28-29], 
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same tangent and same osculating plane at P have there the same curva­
ture ; and the circles of curvature of all plane sections with a given tangent 
at P lie on a sphere. 

We apply these results to the neighborhood \xf\ g rç, \y'\ 2*77 of 
(a), (b), (c) of §3. Because of (b) the Lebesgue area of the surface 
z'=f(x', y') over \x'\ £rj, \y'\ rgrç is finite; it equals the area of the 
corresponding piece A of the original surface 3>, where A is the closure 
of the open set A in the (ju, *0-plane corresponding to \x'\ <TJ, 
Iy'I <rj. In order to avoid the known difficulties regarding the ad-
ditivity of area, observe that $ is, according to Lindelof 's theorem, 
covered by a countable number of sets A. This yields the result of the 
introduction, which may be stated more precisely as follows: 

(4.11) THEOREM. If the surface $ satisfies the hypotheses I, II , I II 
of §3, then $ is the union of a countable number of pieces A of finite 
area, such that for almost all points q of A the following statements hold 
simultaneously: $ has a tangent plane II at q. All curves on A through q 
which have an osculating plane, but different from T, have a curvature 
at q ; and these curvatures satisfy the theorems of Euler and Meusnier. 
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INTEGRAL DISTANCES 

NORMAN H. ANNING AND PAUL ERDÖS 

In the present note we are going to prove the following result: 

For any n we can find n points in the plane not all on a line such that 
their distances are all integral, but it is impossible to find infinitely many 
points with integral distances (not all on a line).1 

PROOF. Consider the circle of diameter 1, # 2 + ; y 2 = l / 4 . Let 
P\J pz, * • " be the sequence of primes of the form 4k + l. I t is well 
known tha t 

2 2 2 

pi = at + bif a{ 5* 0, ^ 0, 

is solvable. Consider the point (on the circle x2+y2 = 1/4) whose dis­
tance from ( — 1/2, 0) is bi/pi. Denote this point by (xi, yi). Consider 
the sequence of points ( — 1/2, 0), (1/2, 0), (#»-, yi), i=ly 2, * • • . We 
shall show that any two distances are rational. Suppose this has been 
shown for all i <j. We then prove that the distance from (#3-, y,•) to 
(xi, yi) is rational. Consider the 4 concyclic points ( — 1/2, 0), (1/2, 0), 
(Pu Ji)i (#ƒ* yi) Î 5 distances are clearly rational, and then by Ptolemy's 
theorem the distance from (xi} yi) to (#/, yi) is also rational. This 
completes the proof. Thus of course by enlarging the radius of the 
circle we can obtain n points with integral distances. 

I t is very likely that these points are dense in the circle x2+y2 = 1/4, 
but this we can not prove. I t is easy to obtain a set which is dense on 
x 2 + y 2 = l / 4 such that all the distances are rational. Consider the 

Received by the editors February 20, 1945. 
1 Anning gave 24 points on a circle with integral distances. Amer. Math. Monthly 

vol. 22 (1915) p. 321. Recently several authors considered this question in the Mathe­
matical Gazette. 


