
ON SIMPLE GROUPS OF FINITE ORDER. I 

RICHARD BRAUER AND HSIO-FU TUAN 

1. Introduction. Using the theory of representations of groups we 
have obtained a number of results for simple groups of certain types 
of orders. In the present paper, we shall prove the following result: 
If ® is a (non-cyclic) simple group of order g~pqhg*, where p and q 
are two primes and where b and g* are positive integers with g* <p — 1, 
then either ®£ÉLF(2, p)1 with p = 2m±li p>3, or ®^LF(2, 2m) with 
p = 2m-\-l, p>3; conversely, these groups satisfy the assumptions. 
As an application, we determine all simple groups of order prqb

1 where 
p, rt q are primes and where b is a positive integer. The only simple 
groups of this type are the well known groups of orders 60 and 168. 

2. Some known results concerning representations of groups. 1. In 
this section, some known theorems are given without proof. Most of 
these results, which are needed in the following, have been obtained 
in the theory of modular representations of groups. However, all the 
statements are concerned with the ordinary group characters.2 

2. If © is a group of order g containing k classes Ki, • • • , K^ 
• • • , Kk of conjugate elements, then there exist exactly k distinct 

irreducible characters fi(G), • • • , fM(G), • • • , f*(G), where G denotes 
a variable element of ®. If we restrict G to a subgroup 2ft of order m 
of ©, then each fM(G) may be considered as a (reducible or irreducible) 
character of 2W. From the orthogonality relations for the characters 
of Sft, it follows that 

(2.1) H'MG) ^ 0 (mod m), 

where the sum extends over all elements G of 9K. More generally, the 
same congruence holds, if J* is a linear combination of the f / s with 
coefficients which are algebraic integers. 

3. Let p be a prime number and let p be a prime ideal divisor of p 
in the algebraic number field generated by all £M(G). Denote by h(G) 
the number of elements in the class K» containing G. If £*M has de
gree 0M, the number h(G)^(G)/zll is an algebraic integer. Two charac
ters fM and f v belong to the same p-block, if 

Presented to the Society, September 17, 1945; received by the editors March 27, 
1945. 

1 We use the notation of L. E. Dickson, Linear groups, Leipzig, 1901. 
2 The fundamental properties of group characters are given in a large number of 

books. Here we mention only: W. Burnside, The theory of groups of finite order, 2d éd., 
Cambridge, 1911. 
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(2.2) h(G)UG)/z = h(G)Çv{G)/z (mod p), 

for all G in ®. In this manner, the k characters are distributed into a 
certain number of ^-blocks Bi(p), B2(p), • • • • The first p-block Bi(p) 
will always be taken as the block containing the 1-character Çi(G) = 1 
(for all G). If for all characters J"M of Bff(p) the degree sM of fM is divisi
ble by a power £ a while at least one of the degrees z^ is not divisible 
by £ a + 1 , then B„(p) is a block of type a. In particular, Bff(p) is of the 
lowest type if a = 0. 

An element G is p-regularf if its order is prime to p ; and G is ^-sin
gular in the other case. For every £-block Bff(p) we have3 

(2.3) H,MP)MQ) = 0, 

where fM ranges over all characters of J?ff(/>) and where P is any 
^-singular element of © and <2 any ^-regular element. 

If we let fp range over all the k characters of ©, then the orthogonal
ity relations for group characters show that the sum in (2.3) vanishes 
for any two elements P and Q for which P and Q~l are not conjugate. 
If P and Qrl are conjugate, the sum does not vanish. 

4. If we assume that the prime p divides g to the first power,4 we 
can make more definite statements. I t will be sufficient to restrict our 
attention to the first £-block Bi(p). There exists a divisor / of ƒ> —1 
such that Bi(p) consists of w = (p — l)/t "non-exceptional" characters 
fi(G), • • • ,Çv>(G)and/"exceptional"charactersÇw+i(G)t • • * , J V M ( G ) . 

The latter have all the same degree zw+i. To each of these characters 
Çi(G), there belongs a certain sign ô»= ± 1 such that the following 
relations hold : 

(2.4) Zi ss Ôi (mod p) for i = 1, 2, • • • , w\ 

(2. S) tzw+i s dw+i (mod p) ; 

(2.6) E î A - O (ô1 = 2 l = l ) . 

Moreover, for ^-singular elements P of G, we have 

(2.7) UP) «*< ( i - 1, 2, . . . ,w). 

There exist elements of order w=*(p — l)/t in ®, hence 

8 R. Brauer and C. Nesbitt, University of Toronto Studies, Mathematical Series, 
No. 4, 1937, Theorem VIII, p. 21. 

4 For the results quoted in this part, cf. R. Brauer, Amer. J. Math, vol.64 (1942) 
pp. 401-420, especially p. 420, §8, and p. 417, Formula (47a). 
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(2.8) g s 0 (mod w). 

5. If ® coincides with its commutator subgroup ®', in particular 
if ® is simple and non-cyclic, then fi = l is the only character of de
gree 1. I t follows that the number w above must be larger than 1. 
Indeed, if we had w = l , the equation (2.6) would read 5iSi+5222 = 0, 
and as Si = 1, Ô2 = ± 1, Z\ = 1, it would follow that the positive number 
%i must be 1 which is impossible. Thus, in particular, py^ 2. 

6. Finally we quote the following results obtained in previous pa
pers which yield characterizations of certain groups LF(21 m). 

THEOREM A.5 If a non-cyclic simple group & has an order which 
contains the prime p to the first power and if the exceptional degree zw+i 
in the first p-block B\{p) satisfies the condition zw+i^(p + l)/21 then 

THEOREM B.6 If a non-cyclic simple group ® has an order g of the 
form 

g = (P- 1)*(1 + tnp)/r, 

where p is a prime and where r and m are non-negative integers such that 
T divides p — 1 and m<(p+3)/2, then either ®^LF(2, p — \) and p 
is a prime of the form p = 2 & +l > 3, or &=LF(2t p) and p is any prime 
larger than 3. 

3. Proof of the main result. We now begin to prove the following 
theorem. 

THEOREM 1. If & is a simple group of order 

(3.1) g = Pqhg*> 

where p and q are two primes and where b and g* are positive integers 
with 

(3.2) g * < # - l , 

then either ®££LF(2, p) with p = 2m±l, p>3, or ®£ÉLF(2, 2m) with 
p = 2m+l, p>3. Converselyj these groups satisfy the assumptions. 

REMARK. I t may be added that for both alternatives we have q = 2 
and m is the highest exponent öf q dividing g. 

PROOF. 1. If g as given by (3.1) is the order of a non-cyclic simple 

* H. F. Tuan, Ann. of Math. vol. 45 <1944) pp. 110-140, especially p. 135, Theo
rem 4, and p. 139, Formulas (lO.i) and (lO.i') for i = l, • • • , 7. Notice that Formulas 
(10.2') and (10.30 are printed there in the wrong order. 

6 R. Brauer, Ann. of Math. vol. 45 (1944) pp. 57-79, especially p. 76, Theorem 11. 
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group ®, then by (3.2) certainly p9e2 and without restriction we may 
assume that 

(3.3) (g*,ç) = l. 

The case p~q is impossible on account of Sylow's theorem since the 
£-Sylow subgroup of a group © of order g ̂ =p^>+1g* would be normal in 
®, if g*<p — l. Hence p^q, and p divides g only to the first power. 
From (2.6) it follows that in the first £-block Bi(p) we have a degree 
n 9^ 1 which is prime to q. Then 

(3.4) n\f, 

and hence n <p — 1. This shows that n must be the exceptional degree 
W = 2«H-I (cf. (2.5)), since all the other degrees are congruent to ± 1 
(mod p) according to (2.4). 

2. If n£(p + l)/2, Theorem A gives ®££LF(2, p), p^3t and 
g=p(p + l)(p-l)/2. Hence 

(p + l)(p - 1) = 2tff. 
As p + l and p — 1 have the greatest common divisor 2, it follows that 
one of the two numbers p — 1 and p + l is divisible by qb. The other 
number then divides 2g*. But p±l >g* by (3.2) and we have one of 
the two cases 

(I) P ~ l - q \ £ + l = 2g*; 

(ID P + 1 = qh, P - 1 = 2g*. 

In either case, q = 2, and this leads to the first alternative of our theo
rem. 

3. We may now assume tha t 

(3.5) p - 1 > n> (p+ l ) /2 . 

By (2.5), we have nt =• ± 1 (mod p) where t divides p — 1. I t follows 
that n^T-(p — l)/t (mod p), and (3.5) gives 

(3.6) n « p - (p - 1)/L 

From (2.8), it follows tha t we may set 

(3.7) (p-l)/t = <fh, 

(3.8) A |**, 

where ]8^6 is a non-negative integer. Combining (3.6) and (3.7), we 
obtain 

(3.9) n=>p-qfiht 
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which implies (n, h)~l. Now (3.4) and (3.8) give 

(3.10) nh\g*. 

The relations (3.6) and (3.7) also yield 

l + n - l + J - ( * - l)/t « 1 + (1 + tcfh) - qPh, 

(3.11) l + n « 2 + qPh(t- 1). 

4. If j8«0, then (3.9) gives p^n+h. On the other hand, (3.10) 
and (3.2) show that nh£*g*<p — l. Hence nh<n+h, and then at least 
one of the two positive integers n, h must be 1. But we have n 9^ 1, and 
therefore h must be equal to 1. However, this would lead to n ~p — 1, 
which contradicts (3.5). Thus, 

(3.12) / 3 > 0 . 

5. From (3.6), it follows that w / s l (mod p). Since n = 2Vj-i, we have 
S„,+i = l in (2.5). The relation (2.6) then has the form 

(3.13) (i + n + . . . ) _ ( . . . ) = o, 

where the missing terms are the non-exceptional degrees greater than 
1 of the first £-block Bi(p). 

If #5^2, then (3.11) shows tha t a t least one of these degrees must 
be prime to g, and hence a divisor of g* <p — 1. But the only degree m 
with 1 <Tn<p — l is the exceptional degree (cf. (2.4)). This is a con
tradiction; we must have 

(3.14) q = 2 . 

6. Assume next that j85> 2. Then (3.11) shows that 1 + ^ = 2 (mod 4), 
and at least one of the missing degrees in (3.13) is not divisible by 4. 
This degree then has the form m—p, or W=2JU with fi\g*. Hence 
m S 2g* <2(p~-l). On the other hand, we have m s= ± 1 (mod p) on ac
count of (2.4). A s m ^ l , the only possibilities are m=p±l. The num
ber g* is a multiple of m/2 , and from (3.2) it now follows that 
g* = (p ± l ) / 2 . But then the divisor n of g* is at most (p ± l ) / 2 which 
contradicts (3.5). 

Hence the only possible case is the case /3 = 1. 
7. For g = 2, j8 = l , the equation (3.9) reads 

(3.15) n = p - 2*. 

The number g* now is odd and so are its divisors n and h. Combining 
(3.10), (3.2) and (3.15), we find 

(3.16) nh g g* < p - 1 < n + 2h. 
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If h5*1, then h^3 and (3.16) gives 

n > (n - 2)h ^ 3n - 6, 

which is impossible as n is odd and n^ 1. This proves that h = 1. Now 
(3.15) reads n=p — 2. The multiple g* of w then must be p — 2; we 
have 

(3.17) g* = n = p-2, 

(3.18) « = * 2 » ( # - 2 ) . 

From (3.6), it follows that 

w = (£ - 1)// = 2. 

In the equation (2.6) only three terms appear. The first two terms are 
1 and n=p--2. The missing term therefore is —• (p •— 1) and (2.6) reads 

(3.19) 1 + (p-2)-(p~l) = 0. 

As the degree of an irreducible character, the number £ — 1 is a divisor 
of g. Then (3.18) shows that p — 1 is a power of 2, say 

(3.20) £ - 1 = 2', cS b. 

8. In order to finish the proof, we need three lemmas which we 
state here in a more general form than actually needed for our present 
purpose. The proof of these lemmas will be given in the next section. 

LEMMA 1. Let © be a group which is identical with its commutator 
subgroup ©', and assume that the first p-block Bi(p) contains an irre
ducible 1-1 representation S of degree z<2p. Then the order of the cen-
tralizer S(<iP) of a p-Sylow subgroup ^ of & is a power of p. 

LEMMA 2. If a group © with center 1 has an irreducible 1-1 representa
tion S °f degree z~pr (p a prime) and if the center S of the p-Sylow 
subgroup ^ of & has the order p*, then S belongs to a p-block of type at 
least s. In particular, r*zs. Also, s^l except when © = 1. 

LEMMA 3. Let © be a group of order g =paqbg* where p and q are dif
ferent primes and a, b and g* are positive integers, (g*, pq) = 1. Assume 
that © does not contain elements of order pq. Then for every p-singular 
element P of ®, we have 

E V M ( - P ) « 0 (mod q% 

where the sum extends over all characters ^ which belong simultaneously 
to a fixed p-block Ba(p) and to a fixed q-block BT(q). Here, zM denotes the 
degree of f M. 
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9. Assuming these lemmas, we conclude the proof of Theorem 1 as 
follows : 

Lemma 1 shows that under the assumptions of the theorem, © does 
not contain any element of order 2p. From Lemma 2, it follows that 
the degree p — 1 =2° in (3.19) belongs to a 2-block J3T(2) which is not 
of the lowest kind. Now apply Lemma 3 to the first £-block B\(p) 
and the 2-block J3r(2). The only character in common to these two 
blocks is the character X of degree p — 1 in (3.19), since the other de
grees occurring in B\(p) are the odd numbers 1 and p — 2 which there
fore cannot occur in BT(2). Now the statement of Lemma 3 gives 

*f(P) - (* - l)f (P) - 0 (mod 2») 

for any ^-singular element P of ©. But (2.7) and (2.4) give ?(P) = — 1, 
and hence p — 1 ==0 (mod 25). Combining this with (3.20) and (3.18) 
we find 

(3.21) p- 1 = 2», 

(3.22) g~p(P~ 1)(P ~ 2) = 2p(l + p(p - 3)/2). 

Now Theorem B can be applied with r = (p — 1 ) /2 and m = (p — 3) /2. 
We have either ® Ê Ë £ P ( 2 , p-1) with £ = 2»+l>3 or ®^Z,P(2, p). 
In the second case, g ~p(p — l)(p + l)/2. Comparison with (3.22) then 
gives p = 5. In any case, © is of the form stated in Theorem 1. As the 
converse is trivial, this finishes the proof. 

4. Proof of the lemmas. To complete the proof of Theorem 1, it 
now remains to prove the three lemmas used and formulated in the 
preceding section. 

PROOF OF LEMMA 1. If f is the (irreducible) character of a 1-1 
representation 3 of the first £-block Bi(p)f we have (cf. (2.2)) 

(4.1) h(G)ï(G)/z m h{G) (mod p). 

For all elements G of the centralizer E(1)3) of a £-Sylow subgroup Ĵ, 
the number h(G) is prime to p and can therefore be cancelled in (4.1) 
and we have then 

(4.2) f(G) ««(rnodp). 

Assume that the order of S ^ ) contains a prime factor v^p. Then 
(S^) contains a cyclic subgroup 33 of order v. Now f (G) for G in 33 
may be considered as a (reducible) character of 33 and the same is 
true for f*(G) =3 = 1 + 1+ • • • + 1 (z terms). We cannot have 
f (G) =2 for all G in 33, as 3 then would represent every G in 33 by 
the unit matrix while S 1S assumed to be a 1-1 representation. The 
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congruence (4.2) implies7 

(4.3) f(G) ~zQ + p6(G), 

where z0 is the least non-negative residue of z0 (mod p) and where 
0(G) is a reducible or irreducible character of 93. 

If the degree 2 of 3 is less than 2p, the degree of 6(G) is 1. I t follows 
that for every G in 93, the matrix &(G) has s0 characteristic roots 1, 
and p roots 6(G). If ® coincides with its commutator subgroup ©', 
every representation of ® represents elements of ® with matrices of 
determinant 1. Hence 

l*o.0(G)* a 1. 

But 0(G) is a vth root of unity with (v, p) = 1. I t follows that 0(G) = 1 
and all characteristic roots of &(G) are 1. But this means tha t 
3(G) = / which gives a contradiction for G 7*1. Hence, under the as
sumptions of Lemma 1, the order of ©(*$) cannot contain a prime 
factor v 9*p, and this proves Lemma 1. 

PROOF OF LEMMA 2. Let S with the character f be an irreducible 1-1 
representation of degree z ~pr of ®. If f belongs to a £-biock B~B(p) 
of type a, we may find a character f 0 of degree Zo in J3 such that z0 is 
divisible by pa but not by pa+1. According to (2.2), we have for any 
element G of ®, 

(4.4) h(G)UG)/z m h(G)UG)/z0 (mod p). 

Now, for any element G of the center (£ of *$, the number h(G) is 
prime to p% and 2 = £ r divides J*(G) which is a sum of pr roots of unity. 
A well known argument of Burnside8 shows that either 3(G) is a 
scalar multiple of I or f (G) = 0 . The first possibility cannot arise for 
G?^l, if the center of ® consists only of 1. In the case f (G) = 0 , (4.4) 
yields 

(4.5) MG) a 0 (mod pp«) (for G ^ 1 in (S), 

since s0 = 0 (mod £ a ) . On the other hand, 

(4.6) fo(l) =2o. 

Adding (4.6) and (4.5) for all elements GT&I of Ê, we obtain 

(4.7) Zfo(G) s so (mod pj«), 

7 It follows from the orthogonality relations for group characters and (4.2) that f (G) 
contains every irreducible character of 35 with a multiplicity divisible by p with the 
exception of the 1-character only. In the case of the 1-character, the multiplicity is 
congruent to z (mod p). 

8 Burnside, p. 322, Theorem I. 
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where the sum extends over all elements G of (£. The expression on 
the left side is divisible by the order p8 of S (cf. (2.1)). Since s 0 ^ 0 
(mod pa+l), the congruence (4.7) shows that s^at and this proves the 
main assertion of Lemma 2. I t is then clear that r^s. If 5 = 0, then g 
would be prime9 to p and hence r = 0, 2 = 1. But then © would be 
Abelian and would not have the center 1, except for @ = 1. 

COROLLARY.10 If in Lemma 2 the p-Sylow subgroup is Abelian, then z 
must be the highest power of p which divides the order of ®. 

PROOF OF LEMMA 3. Let P be a ^-singular element of a group ®, 
let Ba(p) be a fixed £-block of © and set 

(4.8) £M = fM(P) for f, in Bw(p), fc = 0 for fM not in B.(p). 

The equation (2.3) can be written in the form 

(4.9) I t ó Ö ) = 0. 
M 

Here Q is an arbitrary ^-regular element of ®, and we may let £*M 

range over all characters of ©. We can determine ai, a2, • • • , ah from 

(4.10) fc,- E**TM(G0, 
K 

where G\} G2, • • • , Gk represent the different classes of © (this be
cause the determinant | fM(GK)| (ju, K = 1, 2, • • • , Jfe) does not vanish). 
Multiplication of (4.10) with fM(Q) and addition over fx gives 

Zw,(ö)-5>.E£.(G.)r,(e). 

The expression on the left side vanishes on account of (4.9). The 
orthogonality relations for the group characters show that the inner 
sum on the right side is different from 0 only for that element GK which 
is conjugate to Q~x. Hence aK~0 when GK is conjugate to Q~l. Now 
since Q~l as well as Q may be any ^-regular element, it follows that 
aK = 0 when GK is ^-regular. I t will consequently suffice to let GK in 
(4.10) range over all p -singular elements. 

Take Q now as a g-singular element of ©. Since © does not contain 
elements of order pq, the element Q must be ^-regular, and can there
fore be used in (4.9). Applying (2.3) to the g-block BT(q) of ©, we have 
for any g-regular element GK the equation 

(4.11) Z*f„(G,)r,«2) = o, 

9 Burnside, p. 119, Theorem I. 
10 R. Brauer, loc. cit. footnote 6, p. 78, Lemma 5. 
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where fp ranges over all characters of BTiq). In particular, this will 
hold for ^-singular elements GK, tha t is for all GK actually appearing in 
(4.10). Multiplication of (4.11) with aK and subsequent addition over 
all ^-singular GK gives 

E I>«fp(G«)fp«2) = 0. 
* p 

On account of (4.10) this may be written in the form 

(4.12) Z * W P ( 0 ) = 0. 
P 

Set now 

(4.13) S{G) = Z * W P ( G ) 
P 

for any G in ©. Then S(G) is a linear combination of the characters 
of ®, the coefficients £p are algebraic integers as follows from (4.8). 
On account of (4.12), S{G) vanishes for all GT*\ belonging to a 
g-Sylow subgroup O ; we obtain 

P 

where G ranges over all elements of O . The left side is a sum of the 
kind studied in (2.1) and hence it is divisible by the order qb of O . 
Consequently, 

£*£psp s 0 (mod qb). 

Here, p ranges over those values for which £"p lies in BT(q). As defined 
in (4.8), £p is 0 if fp does not belong to Ba(p). We thus obtain 

ZTpC-PK^OCmod^), 

here the sum extends over those values of p for which fp belongs to 
both Bff(p) and BT(q). This proves Lemma 3. 

COROLLARY. If the order of a group © is divisible by two different 
primes p and q, and if ® does not contain elements of order pq, then the 
first p-block Bi(p) of © and the first q-block Biiq) of © have at least one 
character ^5*1 in common. 

5. Simple groups of order prqh. We now prove the following theo
rem. 

THEOREM 2.11 If a simple group © has an order of the form g=prqb 

11 This result was announced without proof in R. Brauer, Proc. Nat. Acad. ScL 
U. S. A. vol. 25 (1939) p. 290. 
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where p, q and r are primes and where b is a positive integer, then 

© S LF(2, 5), g = 60, or © S LF(2, 7), g = 168. 

PROOF. I t follows from a well known theorem of Burnside12 that 
the primes p, q, r must be distinct. As then both p and r must be odd, 
we may assume without restriction that r<p — l. Now Theorem 1 
can be applied. Two cases are possible: 

(I) g = Prq" = p{p - l)(p + D/2, * = 2 » ± 1 ; 

(II) g = prq" = p(p - l)(p - 2), p = 2"+l; 

with g = 2 and ^>^3. In both cases, g is divisible by 3 and hence r = 3. 
In the first case, this gives 

3-2^=(p-l)(p+l). 

Not both factors on the right are divisible by 4. Hence either p + 1 or 
p-\ divides 6. Then p = 5 or p = 7 and this leads to &^LF(2t 5) or 
®=LF(2, 7). In the second case, we obtain 

3-2» = 0 > - l ) ( * - 2 ) . 

I t follows that the odd number p — 2 must be 3 and this gives p = 5 , 
®^LF(2, 4)9*LF(2, 5). Thus Theorem 2 is proved. 

UNIVERSITY OF TORONTO AND 

PRINCETON UNIVERSITY 

Burnside, p. 323, Theorem I, Corollary 3. 


