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In a recent paper [l J,1 A. B. Farnell reiterated the possibility of the 
existence of a certain upper bound for the characteristic roots of a 
matrix. This bound was first conjectured by W. V. Parker (cf. [ l ]) , 
and was, in fact, proved in the case of matrices of order 2 by Farnell. 
We shall here, in Theorem 1 below, establish that bound for matrices 
of any order n. Two previous results on bounds for characteristic 
roots, one due to Parker [2], and one to Farnell [ l ] , will be stated 
for purposes of comparison with Theorem 1. But first, we make cer
tain definitions, following, for the most part, those of Farnell, for the 
sake of uniformity. 

We let A =||#rf i | |, of order n, be any matrix of complex numbers, 
with a characteristic root X =a +i/3 different from 0. Then there exists 
a non-null vector {xr}y r = l, • • • , n, such that 

(1) X#r = ]C ar8%s. 
a 

With A* denoting the hermitian-conjugate of A, set 

(A + A*)/2 = B = \\br8\l (A - A*)/2i = C = ||*.||, 

both of which matrices are hermitian. Finally, define 

Rr = Z-/1 ars I » Ts = / , I ar& I, 
s r 

R = max(r) Rr, T = max(8) T8y 

si = CI M = ZK|, 5/ =Zk*| = i;Ur|. 
8 8 8 8 

Now the theorems of Parker and Farnell may be stated briefly as 
follows : 

PARKER'S THEOREM. If 5, S', and £ " are the greatest of the 
(Rr'+Tr)/2, 5 / , and S y, respectively, then 

M â S , | a\ g 5 ' , | j 8 | g S " . 

FARNELI /S THEOREM. 2 |X|2 is bounded above by RT. 
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1 Numbers in brackets refer to the references cited at the end of the paper. 
2 This is not the strongest bound that Farnell obtains. 
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I t should be pointed out that both these theorems were proved for 
any X in the field of values of the matrix A, and thereby in particular 
for the characteristic roots. On the other hand, the results that we 
shall establish below are not necessarily true for all numbers in the 
field of values. One observes that these theorems, and all that follow, 
are trivially true when X = 0. We therefore assume throughout that 
X^O. 

We now prove the following theorem. 

THEOREM 1. |X|2 is bounded above by max ( r ) (RrTr)' 

From the equalities (1) we deduce immediately the inequalities 

(2) NUI è Zk.||*.| = Zk.|1'2-U.l1/2l*.l-
8 8 

Applying Schwarz's inequality to the right-hand side in the manner 
indicated by the preparation, we obtain 

MUI* {(Ek.|)(Ek«ll*.|2)}1/2 

= Rr ( X ) I «r« I I *« I ) ! 
or, squaring this, 

(3) \-K\2\xr\2^RrTt\^\\x,\\ 
8 

Suppose first tha t no Rr vanishes. Then we divide the rth inequality 
by Rr, and sum over r, so obtaining 

N2Z-4^Zk8||*.|2=Zr.UI2. 
r -K-r r,8 8 

This may be written 

I t follows that , for some m, 

N2 

or 

| X21 g RmTm g max(r) (RrTr), 

and the theorem is proved if i?r?^0 for each r. 
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Now suppose that some Rr vanishes. By a permutation of the in
equalities (3), and a like permutation of the terms in the right-hand 
member of each inequality (a similarity transformation of the matrix 
-4!), we may take Rn = 0. Then, since X5^0, we must havexn = 0. The 
inequalities (3), which are n in number, and in each of which the sum
mation extends over the range 5 = 1, 2, • • • , n, are thus reduced to 
the n — 1 inequalities 

| X | 2 | xr\
2^R?E\ar8\\ x8\

2, r = 1,2, • • - , » - 1. 

If, now, Rr^O for r = l, 2, • • • , # — 1 , we apply to these inequalities 
the arguments above, and obtain 

| X|2 ^ max(r) I i ? r ' S I a*r\ Y 

But Rn = 0 implies that | a n r | = 0 for each r = l, 2, • • • , n. Hence, for 
each r, 

n—\ n 

2 3 I a*r I = 2 3 I asr I = Tr 
«*=1 8=1 

and so, again, as was to be proved, 

|X | 2 g m a x ( r ) (RrTr). 

In general, by the procedure just illustrated, one shows tha t 

| X|2 ^ max(r) IRr\£2\ aTr\\ 

where r ranges over those indices K such that U L K ^ 0 . But for those in
dices s, such tha t R8=0, one has \a8r\ = 0 for each r = l, 2, • • • , n, 
so that 

n 

2 3 I arr I = 2 3 I asr\ = Tr. 
T S = l 

Thus, the theorem is proved in every case. 
Parker's bound on | X| follows from Theorem 1, since if | X| 2^RmTm, 

then 
| X | ^ (RmTm)1/2

 = {Rm + Tm)/2 S S. 

Furthermore, if |X| 2^RmTmi then Rm^R and Tm^-T, and we have 
JX| 2^RT, which is Farnell's result. 

By the method employed above, one can establish the following, 
somewhat stronger theorem. 
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THEOREM 2. Let 0 S k S 2, and define R™ = E * \ ar8 \ *, T^ = E r | ars \ *. 
JT^w, /or each fixed k in the specified interval, \\\2 is bounded above by 
m a x t o ^ r ? - 0 ) . 

To prove this, one applies the very same train of arguments as in 
the proof of Theorem 1, starting with the inequalities (2) in the form 

M | * | ^ El«r. |* / , ' |ûr. | 1"* / , |* . | -
9 

By permitting k to vary with r and s in these last inequalities, one 
obtains a still stronger generalization of Theorem 1. 

We state one more result, which obtains without the aid of 
Schwarz's inequality, and which again implies Farnell's theorem. 

THEOREM 3. |X| is bounded above by both R and T. 

Let \xm\ = m a x ( r ) | x r | ; then, dividing the inequality 

I X | | Xm | S E I a™ | | %s | 
a 

through by \xm\, we have 

I x I 
|X| g E I *«. I T-^T ^ E U ™ I = RmûW. 

s I # m J « 

Now, sum all the following inequalities: 

I X | | xr | S E I ars | | xs | ; 
a 

we obtain , , 

NEWsï £r.|*.| 
r ê 

E ( I XI - T.) | x. | ^ 0. 
a 

I x I ̂  r m g sr. 
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