
NOTE ON FACTORIZATION IN A QUADRATIC FIELD 

GORDON PALL 

1. Introduction. In this note we shall prove certain theorems relating 
to the "existence" and "uniqueness" of factorization in a quadratic 
field (cf. §§2 and 3) ; and shall maintain that the introduction of 
ideals should be regarded as restoring existence rather than uniqueness 
of factorization into primes. 

To illustrate this, let us consider first the case of quaternions. Let 
x = Xo+iiXi+i2pC2+izXz be a primitive quaternion, that is, let the co
ordinates xo, • • • , Xz be relative-prime rational integers. Let the 
norm Nx=Ylxi2 be factored into a product of rational primes 
pi • • • p8. Then, by a theorem of Lipschitz,1 there exist prime qua
ternions / ' , t", • • • , t^\ of respective norms pl9 • • • , p8 such that 
x = t't" • • • /(s). This factorization is unique, for any given ordering of 
the primes pu • • • , p8, except that we can insert unit factors in the 
trivial way illustrated by the example tft"t'n' = (t'ii)(iit"iz)(iit'") 

= ( - W * t ) ( H * " ' ) = 
I t is proved elsewhere tha t a similar uniqueness of factorization 

holds in every system of "generalized quaternions," but that the exist
ence of such a factorization will fail if certain rational primes pi are 
not norms. 

As is well known there exists a very satisfactory arithmetic of 
ordinary quaternions, without the necessity of introducing ideals. 
Nevertheless, factorization of imprimitive quaternions is not unique. 
For example, 

6 = (1 - *i - *0(1 - ii)(l + *i)(l + h + ù) 

= (1 - ii ~ *s)(l - *i)(l + ii)(i + k + *a), 

where the primes 1 —ii—i2 and 1— ii—iz do not differ only by unit 
factors. 

Similarly, in the quadratic field R(p), where p 2 = —-5, we have 

6 = (l + p ) ( l - p ) = 2-3, 

where the factors are essentially different prime integers of the field, 
and hence factorization is not unique. Yet a uniqueness theorem 
analogous to tha t for ordinary quaternions holds for the factoriza-
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tion of primitive integers in every quadratic field. 
Indeed, let A be a non-square integer, A = € (mod 4), €==0 or 1, 

A/(2 — €)2 be squarefree. Set p = ( —€+A1 /2)/2. Then the integers of 
the field R(p) have the form x = #o+#iP> where XQ and Xi are rational 
integers. The norm of x is Nx = xQ

2 — exoXi+(e2 — A)#i2/4. Suppose that 
x is primitive, that is, (#0, ĉi) = 1, and factor Nx=pi • • « ^ a s a prod
uct of ordinary primes pit Then (as a corollary of Theorem 1) the 
factorizations x=tftn • • • t(3) with N(t{i))=pi are unique apart from 
unit factors. However, the prime factors pi of Nx need not be norms, 
and so such factorizations need not exist. 

When ideals are introduced into the quadratic field, there are ideals 
of every prime norm which can divide the norm of a primitive in
teger. For, if ( A | £ ) = — 1 , then p\Nx implies that p\x. Hence the 
principal service performed by the introduction of ideals is to restore 
existence rather than uniqueness of factorization into "primes." I t is 
the fact tha t every prime is a sum of four squares that makes the 
arithmetic of quaternions satisfactory; and the fact that every prime 
p such that (A \p)9^ — 1 is a norm (in essentially only one way) that 
makes the fundamental theorem of arithmetic hold in those quad
ratic fields in which there is only one class of forms of discriminant A. 

2. Quadratic integers; unique factorization. Let A be a non-square 
integer, A ^ € (mod 4), where € = 0 or 1. Set p = ( - e + A ^ 2 ) / 2 . We shall 
consider factorization in the ring of quadratic integers x=*Xo+Xipy 

where Xo and xi are rational integers. The letters / , • • • , z (without 
subscripts) will be reserved for such integers. We do not restrict at
tention to the case where A/(2 — e)2 is squarefree. This restriction is 
commonly made in books on quadratic fields, and does in fact make 
the arithmetical theory simpler than it would otherwise be, since it 
excludes from consideration certain complicated cases. But, arith
metically, we are as much interested in the complicated cases (such 
as, say #o+#i(13)1/2) as in the others, and with very little effort can 
remove the restriction. I t is to be noted tha t if A/(2 —e)2 is square-
free, our set of integers is the same as that in the classical theory. 

I t will be observed that x (along with its conjugate x = x0+Xip, 
where p = ( —c—A1/2)/2) satisfies the equation 

x2 — (2#o ~ exi)x + (xo2 — €#o#i + (e2 — A)#i2/4) = 0. 

The rational integers x+% = 2x0 — exi and xx = xo2 — ex^xi + (e2 — A)#i2/4 
are called the trace and norm of x, respectively, the latter denoted 
by Nx. 

If x = yz, evidently x = yz, whence Nx-=Ny-Nz. Hence if / is a di-
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visor of x, Nt\ Nx. If 0 denotes any unit, tha t is if NO = 1, the associ
ates 6t are (with t) factors of x, all with the same norm. 

THEOREM 1. If x is primitive (that is, x0, xi coprime), and 

x = ut = vt', Nt = Nt', 

then t and t' are associates, except possibly when Nt is divisible by a 
prime pfor which A/p2 is an integer congruent to 0 or 1 mod 4.2 

The proof is made up of three lemmas : 

LEMMA 1. If x^y (mod m), then x and y have the same factors of 
norm m. 

PROOF. If x = ut and Nt = m, then x+zm — (u+zt)t. 

LEMMA 2. If ut = vt', Nt = Nt' =m, and Nv is prime to m, then t 
and t' are associates. 

PROOF. Let k-Nv^l (mod m). Then kvut = k-Nv-t'. By Lemma 1, 
/ ' has t for a factor, tr =wt, Nt' = Nw-Nt, Nw = l. 

LEMMA 3. If x is primitive, and x = ut where Nt = m, then we can find 
an integral z such that {N(x+zm)}/m is prime to m, except possibly 
when m is not semiprime to A. 

PROOF. Set xx = km, tha t is, (2#0 —€#i)2 — Ax2 = 4:km. We have 

N(x + zm) = (x + zm)(x + zm) = xx + (xz + zx)m + zzm2 

— m{ k + (2#o — €#1)210 

+ ( - exo + (e2 - A)xi/2)zi + mNz). 

We can evidently choose z0 and Z\ to make {N(x+zm)}/m prime to 
m, except when for some prime p dividing m and k, 

(1) 2#o - exi s 0 s - exo + (e2 - A)*i/2 (mod p). 

Since (x0, #i) = l this requires that £2 |A if p>2. If p = 2 and c = l, 
(1) implies 2 |x0 and 2|#i, a contradiction. If p = 2 and € = 0, then 
4|#o2— A#i2/4, implying x0 and Xi even, if A/4 = 2 or 3 (mod 4). 

3. Conditions for the existence of factors of given norm. For a 
given x, and a given rational integer m which satisfies the obviously 
necessary conditions 

2 Hence there is no exception if A/(2 —e)2 is squarefree. W e shall say t h a t m is 
semiprime to A if m is divisible by no prime p such t ha t p2\ A (p > 2 ) , nor by the prime 2 
if A / 4 = 0 or 1 (mod 4) . All integers are semiprime to A if A/(2 — e)2 is squarefree. 
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(2) m is a norm, m \ Nx, 

we investigate the set of divisors t of x having norm tn. Consider then 

(3) x = ut, Nt = tn. 

These conditions on / are equivalent to the following : 

(4) xt = 0 (mod tn), Nt = tn. 

The condition # J = 0 expands into the following : 

(5) Xito — xoh = 0 (mod tn), 

(6) xoto — (exo — (e2 — A)#i/4)/i ss 0 (mod tn). 

Hereafter we assume, for simplicity, that : 

(7) x is primitive, and tn is semiprime to A. 

Since m\xo2 — exoXi+(e2— A)#i2/4, (tn, #i) = l . Hence (5) can be writ
ten / o s ^ i (mod tn), where A=#o/#i- If this is put into (6), (6) re
duces to (h/xi)Nx^0 (mod tn), a consequence of (22). 

Hence, under assumptions (2) and (7i), (3) holds if and only if 

(8) Nt = tn, to ss X*i (mod m). 

Putting to = my0+'Kyi, h=*yi, into (81), we get 

(9) myo2 + (2X - €)y0?i + ^ i 2 = 1, 

where k is the integer defined by 

km = X2 - e\ + (e2 - A)/4. 

The binary form <t}=myo2 + (2\ — €)yoyi+kyi2 has discriminant A. 
Now it is well known tha t only one class of binary quadratic forms 

of discriminant A can represent 1, namely the principal class, con
taining the form <j>o=XQ2 — exoXi+(e2--A)xi2/4c. 

There are certain cases in which we can be sure that <f> belongs to 
the principal class. An integer tn semiprime to A is represented by 
forms in a t most one genus of discriminant A. Hence if <t>o is in a genus 
of one class, <j>, which represents m, must be equivalent to <t>o. In par
ticular the form #o2+5#i2 is included in this case. 

Secondly, a prime is represented in a t most one class and its recipro
cal. Hence <£^<£o if i m i s a prime. 

Finally we shall state without proof necessary and sufficient condi
tions that an integer tn which is semiprime to A be isolated, that is, 
be represented by at most one class and its reciprocal class under 
composition. First suppose tha t the primes pi, • • • , pr are repre-
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sented in non-ambiguous classes Gi, • • • , Gr, and that ai, • • • , ar 

are positive integers. Then ni = piai • • • pr
ar is isolated if and only if 

either r = 0, or r = 1 = ai, or 

ai + ai + • • • + «r is odd, Gi2 = • • • = Gr\ Gi4 = • • • = Gr
4 = 1. 

Next, if wi contains only primes represented in non-ambiguous classes, 
and n% only primes represented only in ambiguous classes (these in
clude primes dividing the discriminant but semiprime to it), then n\ni 
is isolated if and only if rt\ is isolated. Finally, the only other primes 
which may divide an integer m which is semiprime to A are primes 
such tha t (A | p) = — 1 ; such primes must appear in m to an even 
power, if m is represented at all, and can be cancelled out of m and 
its representations. 

I t is only when there is but one class of forms of discriminant A that 
every prime p such tha t ( A | ^ ) T ^ — 1 , and p is semiprime to A, is a 
norm. Further, every such prime is a norm in only one way, so that 
its factors are unique. Hence in this case we can easily deduce from 
the preceding theory that every quadratic integer whose norm is semi-
prime to A has a unique expression into factors, which are either of 
prime norm or are themselves rational primes such that (A|̂ >) = — 1 . 
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