NOTE ON A NOTE OF H. F. TUAN

I. S. COHEN

The following theorem is proved.
Theorem. If Z is a nilpotent matrix with elements in a field K, then the replicas of Z are those and only those matrices which are of the form $f(Z)$, where $f(x)$ is an additive ${ }^{1}$ polynomial in $K[x]$.

The concept of a replica was introduced by Chevalley, ${ }^{2}$ who proved this theorem when K is of characteristic zero. The theorem was proved in general by H. F. Tuan ${ }^{3}$ by elementary methods. The object of this note is to give a simplification of Tuan's proof ; in particular, computations involving the specific form of Z are avoided.

If $h(x)$ is additive, then according as K is of characteristic 0 or p, $h(x)$ will have one of the two forms

$$
\begin{equation*}
t x, \quad \sum_{j=1}^{m} t_{j} x^{p j} \quad\left(t, t_{j} \in K\right) \tag{1}
\end{equation*}
$$

For if $h(x)$ had any other terms, then $h(x)+h(y)=h(x+y)$ would contain product terms $x^{\alpha} y^{\beta}, \alpha>0, \beta>0$. Conversely, polynomials of the form (1) are clearly additive. If $h(x)=\sum_{i=0}^{s} c_{k} x^{k}\left(c_{k} \in K\right)$, then we define

$$
h^{[i]}(x)=\sum_{k=i}^{s} C_{k, i} c_{k} x^{k-i}
$$

where the $C_{k, i}$ are binomial coefficients. Evidently

$$
h^{(i)}(x)=i!h^{[i]}(x), \quad h(x+y)=\sum_{i=0}^{s} h^{[i]}(x) y^{i}
$$

It follows from this that $h(x)$ is additive if and only if $c_{0}=0$ and $h^{[i]}(x)=c_{i}$ for $i>0$.

[^0]If $f(x)$ is additive then it is easily seen that $f(Z)_{r, s}=f\left(Z_{r, s}\right)$; hence (Z) is a replica of Z if $f(x)$ is additive. The converse follows from : ${ }^{4}$

Lemma 1. Let Z be a nilpotent matrix over a field K and let Z^{\prime} be a matrix such that $Z^{\prime}=f(Z), Z_{0,2}^{\prime}=g\left(Z_{0,2}\right)$, where $f(x)$ and $g(x)$ are polynomials without constant terms. Then f may be assumed to be additive.

This lemma does indeed imply the theorem since Chevalley ${ }^{2}$ has proved (p. 529) that a replica Z^{\prime} of Z satisfies the hypothesis of the lemma.

We now recall some definitions. If A and B are $n \times n$ matrices over K, then $A \times B$ is the $n^{2} \times n^{2}$ matrix formed by the $n \times n$ array of matrices $a_{i j} B$, where $A=\left(a_{i j}\right)$.The following statements are evident:

$$
\begin{gather*}
(A \times B)(C \times D)=A C \times B D \\
\left(A+A_{1}\right) \times B=A \times B+A_{1} \times B \\
c A \times B=c(A \times B) \quad \text { if } \quad c \in K \\
A \times B=0 \text { implies } A=0 \quad \text { or } B=0 \tag{2}
\end{gather*}
$$

Finally, $Z_{0,2}$ is defined as $Z \times E+E \times Z ; E$ is the $n \times n$ unit matrix, where n is the dimension of Z.

Since Z is nilpotent and since it may be assumed that $Z \neq 0$ (for Lemma 1 is trivial if $Z=0$), there is an integer m such that

$$
\begin{equation*}
Z^{m} \neq 0, \quad Z^{m+1}=0, \quad 1 \leqq m \leqq n-1 \tag{3}
\end{equation*}
$$

Lemma 2. If $A_{0}, A_{1}, \cdots, A_{m}$ are $n \times n$ matrices such that

$$
A_{0} \times E+A_{1} \times Z+\cdots+A_{m} \times Z^{m}=0
$$

then $A_{0}=A_{1}=\cdots=A_{m}=0$.
Proof. Multiplying by $E \times Z^{m}$, we obtain $A_{0} \times Z^{m}=0, A_{0}=0$ by (2) and (3). Multiplying successively by $E \times Z^{m-1}, E \times Z^{m-2}, \cdots$, we obtain $A_{1}=A_{2}=\cdots=0$.

Proof of Lemma 1. In view of (3) the polynomial $f(x)$ may be assumed to be of degree at most m. We show that it must then be additive. Now

$$
\left(Z_{0,2}\right)^{k}=(Z \times E+E \times Z)^{k}=\sum_{i=0}^{k} C_{k, i} Z^{k-i} \times Z^{i}
$$

It follows that $\left(Z_{0,2}\right)^{2 m+1}=0$, so that $g(x)$ may be assumed of degree at most $2 m$. We observe incidentally that Lemma 2 implies that

[^1]$\left(Z_{0,2}\right)^{m} \neq 0$; if K is of characteristic 0 , then also $\left(Z_{0,2}\right)^{2 m} \neq 0$, for $\left(Z_{0,2}\right)^{2 m}=C_{2 m, m} Z^{m} \times Z^{m}$.

Now we have

$$
\begin{align*}
Z_{0,2}^{\prime}= & g\left(Z_{0,2}\right)=g(Z \times E+E \times Z)=\sum_{i=0}^{2 m} g^{[i]}(Z \times E)(E \times Z)^{\cdot} \\
= & g(Z) \times E+g^{[1]}(Z) \times Z+g^{[2]}(Z) \times Z^{2}+\cdots \tag{4}\\
& +g^{[m]}(Z) \times Z^{m} .
\end{align*}
$$

On the other hand, placing $f(x)=\sum_{i=1}^{m} a_{i} x^{i}$, we have

$$
\begin{align*}
Z_{0,2}^{\prime} & =Z^{\prime} \times E+E \times Z^{\prime}=f(Z) \times E+E \times f(Z) \tag{5}\\
& =f(Z) \times E+a_{1} E \times Z+a_{2} E \times Z^{2}+\cdots+a_{m} E \times Z^{m} .
\end{align*}
$$

A comparison of (4) and (5) gives, by Lemma 2,

$$
\begin{array}{lll}
g(Z)=f(Z), & g^{[i]}(Z)=a_{i} E, & \\
g(x) \equiv f(x)\left(x^{m+1}\right), & g^{[i]}(x) \equiv a_{i}\left(x^{m+1}\right), & \\
l=1, \cdots, m \\
& i=m
\end{array}
$$

From the first congruence, $g^{[i]}(x) \equiv f^{[i]}(x)\left(x^{m+1-i}\right)$, and from the second, $f^{[i]}(x) \equiv a_{i}\left(x^{m+1-i}\right)$. Since $f^{[i]}(x)$ is of degree at most $m-i$, $f^{[2]}(x)=a_{i}$. By a previous remark it follows that $f(x)$ is additive, and this completes the proof.

Harvard University

[^0]: Received by the editors November 1, 1945.
 ${ }^{1}$ A polynomial $f(x)$ is additive if $f(x+y)=f(x)+f(y)$. The statement of the theorem in terms of the additivity of $f(x)$ rather than in terms of the explicit form (1), as well as the use of the derived polynomials $f^{[i]}(x)$ to replace explicit computation with binomial coefficients, was suggested by Professor Jacobson.
 ${ }^{2}$ Claude Chevalley, A new kind of relationship between matrices, Amer. J. Math. vol. 65 (1943) pp. 521-531. We make use of the definitions and notations of this paper.
 ${ }^{3}$ Hsio-Fu Tuan, A note on the replicas of nilpotent matrices, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 305-312, in particular Theorems (A) and (D).

[^1]: ${ }^{4}$ Loc. cit., Theorems (B) and (C).

