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The cyclotomic polynomial Fn(x) is defined as the polynomial 
whose roots are the primitive nth roots of unity. It is well known 
that 

Fn(x) - I I (*nld - l)M(<i). 
d\n 

For n<105 all coefficients of Fn(x) are ±1 or 0. For n = 10S, the co­
efficient 2 occurs for the first time. Denote by A w the greatest coeffi­
cient of Fn(x) (in absolute value). Schur proved that lim sup -4n= °°. 
Emma Lehmer1 proved that An>cnl,z for infinitely many n. In fact 
she proved that infinitely many such w's are of the form pqr with 
p, q, and r prime. In the present note we are going to prove that 
An>nk for every k and infinitely many n. This is implied by the still 
sharper theorem: 

THEOREM I.2 For infinitely many n 

An > exp [*i(log w)4/3]. 

Specifically we may take n = 2 • 3 • 5 • • • pk for sufficiently large k. 

Since 
max \Fn(x)\ g An[<j>{n) + l ] , 

Theorem 1 follows at once from the following theorem. 

THEOREM 2. For infinitely many n 

max | Fn(x) | > exp [c2(log n)llz]. 

For the proof of Theorem 2 we require several lemmas. 

LEMMA 1. Letf(x) be a polynomial of highest coefficient 1 of degree m 
with all its roots on the unit circle. Suppose that in the unit circle f(x) 
assumes its maximum atxo (| #o| = 1), and let y0 be the root off{x) closest 
to XQ. Then the arc between XQ and y o is not less than ic/m; and if it 
equals w/m, f(x) =xm — l. 

Received by the editors May 5, 1945, and, in revised form, August 22, 1945. 
1 Bull. Amer. Math. Soc. vol. 42 (1936) p. 389. Reference to the older literature 

can be found in this paper. 
1 Throughout the paper a denotes a positive constant. 
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This is a theorem of M. Riesz.8 

Setw = 2-3-5 •••ƒ>*. 

LEMMA 2. pk~log n. 

LEMMA 3. </>(n)~e~yn/log log w, where y is Euler's constant. 

Lemma 2 is a well known consequence of the prime number theo­
rem, and Lemma 3 follows from Lemma 2 and a theorem of Mertens.4 

LEMMA 4. Suppose pkaûu^phm where 1 < # ^ 4 / 3 , and let N be the 
number of integers not greater than u which are prime to n. Then for 
sufficiently large k, 

N>(l+cz)uxj>(n)/n. 

PROOF. The integers in question are primes greater than ƒ>*. By 
the prime number theorem 

N ~ u/log u — pk/log pk ~ u/log u. 

Now 1/log u ̂  3/(4 log pk) ; and, by Lemmas 2 and 3, log pk~log log n 
~e-in/<f>(n). Lemma 4 now follows from e~?<3/4. 

LEMMA 5. Suppose that f or an infinite number of integers m we are 
given a polynomial gm(x) of highest coefficient 1 of degree m, with all its 
roots on the unit circle and symmetric with respect ta the real axis, and 
with | gm(l) | =1 , Let tm be a function of m such that tm/m <w and tm—> oo 
as m-+co. Suppose constants c^ e (0<€<1, 0<c 4 <l) given such that 
for any u with tm

l~'Su^tm the number of roots of gm(x) =gm(eid) with 
| 0\ Su/m is greater than (l+Ci)u/rt that is, greater than (l+c4) times 
the number of roots of xm = l in the same interval. Then for sufficiently 
large m 

max | g(x) I > exp (c6tm).* 

PROOF. Denote by A, B, C the following arcs: 

A: \e\ s£7» , 
B: \o\g tm/mt 

C: | 61 g (tm + T)/m. 

We define new polynomials hm(x)=xm+ • • • as follows. Outside J5, 

* Jber. Deutschen Math. Verein. vol. 23 (1914) pp. 354-368. 
4 See, for example, Hardy and Wright, Introduction to the theory of numbers, p. 349. 
8 An analogous but weaker theorem has been stated in a previous paper (Ann. of 

Math. vol. 44 (1943) p. 337. 
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hm and gm have the same roots. In A, hm has no roots. On B—A we 
place consecutive roots spaced by the angle lir/m. Finally the remain­
ing roots of hm are placed a t the end points of B, half a t each. 

Let 0i, 02, • • • and <£i, 02, • • • denote the arguments of the roots 
of gm and hm in B above the real axis; we number them in increasing 
order of magnitude. Our construction implies 

(1) <f)r à min (tm /m + l-Krjm, tm/m) 

while the hypothesis of Lemma 5 translates into 

(2) 6r g max (im'/tn, 2ar /( l + c^m). 

From (1) and (2) we deduce <l>r^0r, that is, the process has pushed 
roots of gm away from 1. If ei0

f eia are points above the real axis re­
spectively inside and outside B, then 

d | (eia - ei$)(eict - e**6) \ /dB = 8 sin 0(cos a - cos 0) < 0 

so that the process reduces gm outside B, that is, 

(3) | hm(x) | g | gm(x) | 

outside B. 
We shall next prove 

14) | *m(l) | > exp (c6/m). 

Take m large enough so that tm< è 2 and confine r to the interval 

(1 + cA)tm*/2TT S r 

^ (1 + càtm/4*. 

Then (2) reduces to 

(2') 0r g 2*r/(l + c4)w. 

Since from (5) and c^<l we have 27ir^£m, (1) similarly becomes 

(1') 4 r è 2TTT/W. 

Combining (1') and (2') we find 0 r/0r — 1 ^£4 whence 

I 1 •— exp (i<l>r) I à £7(1 ~ exp (idr) | . 

From this it follows that | hm(l) | ^C7R\ gm(l) | , where R is the number 
of values of r permitted in (5). Since for large rn, R>c4my we have 
c7

R>exp(cttm), proving (4). 
Let X denote the number of roots of hm a t the end points of B. 
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It follows from our hypothesis that X>C4tm/ir- We define a further 
polynomial km(x)=xm+ • • • by placing roots at the points with 
arguments ±w/m1 ±.3ir/rn> ±57r/m, • • • on the arc A. If the number 
of these points is F, then Y<c9tm

l~: We place (X — F)/2 roots of km 

at each end point of B and otherwise the roots of hm and km coincide. 
In moving the F roots to pass from hm to km the greatest migration 

along the arc is from tm/m to ir/m. Hence 

(6) | M l ) | à ( W k ) F | * * ( l ) | . 

Outside the arc C the movement of roots tends to increase hm\ the 
worst place is right at the end points of C and there we have the 
similar estimate 

(7) \km(x)\ £(cntm)Y\hm(x)\ 

outside C. Now km has roots all through B spaced 2TT/W apart, and 
km9£xm--'l. By Lemma 1, km must assume its maximum at a point XQ 
outside C. Then, applying (3), (7), (6), and (4) in succession, we ob­
tain 

| gm(Xo) I > {cntmyY{Clo/tm)Y e x p (<tfm) 

= (Ci2/tm)2Y e x p fo/tn) 

> exp (com), 

which completes the proof of Lemma 5. 
PROOF OF THEOREM 2. Take n«2-3-5 • • • £ * . It is well known 

that | <FW(1)| = 1. In view of Lemma 4, we may apply Lemma 5 with 
w, gm(x), tm, e replaced by </>(n), Fn(x), phm and 1/6 respectively. The 
conclusion is precisely Theorem 2. 

Theorem 2 is probably not the best result. It should not be difficult 
to extend the method to show that 

An > exp (log n)h 

for every k and infinitely many n. A very much stronger result may 
be true, namely 

(8) An > exp (clzti/log log n) 

for infinitely many n. If true, this would be essentially the best possi­
ble result, because for a certain cu and all n, 

An<exp(cun/log log n). 

(The proof is omitted.) 
The possibility that (7) may be true is indicated in the following 

theorem. 
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THEOREM 3. Let n be the product of k distinct primes pu p2, • * • , pk 
and denote by f(x) the number of integers not greater than x which are 
relatively prime to n. Let 

p = ( i - i / K > . . . ( l - i / M 

g(x)=f(x)-Px. 

Then there exists an Xo, l^Xo<n, such that 

(9) | g(xo) | > *i52*'2(log k)~u\ 

The connection between Theorem 3 and (8) is as follows. The func­
tion g(x) measures how much the roots of Fn(x) are displaced from 
the uniform distribution. Lemma 5 then suggests that it might be 
possible to prove 

(10) max | Fn(x) \ > exp [<a62*/2(log k)-1'*]. 
I* l" - i 

If in particular we take n = 2 • 3 • 5 • • • ph, then 

pk~\og n~k log k, 

and (10) is a result similar to (8). 
PROOF OF THEOREM 3. The usual sieve process gives 

ƒ(*) = [x] - z [4 l + 2 IT] I>«[*A]. 
p\nLpJ pqlnLpqJ r\n 

Define (x/r) —x/r — [x/r], so that g(x) = ]Cr|nMM(*A0- Then 

i to? = £ MWMWÊ («AX*/*). 
re—1 r ,a1 n ««1 

Let r — ud, s — vdy (u, v) = l. Then the final sum becomes 
n d - 1 

*—1 a-=0 

• [a + a + <H + <,+ („_ l)d] 
= »(3r* - 3r - 35 + <Z2 + 2)/12rs. 

In carrying out the second summation, the first three terms vanish. 
Hence 

12Ê k(*)]2 = « Z (<*2 + 2)MW/.(*)/« 

= w(2*P + 2P2). 
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Now P> Cu/log k, as follows a fortiori from Lemma 3. Hence 

Ê ÙK*)]2 > Cu»2»/log *, 
* - l 

from which the existence of an x0 satisfying (9) follows at once. 
I am indebted to Dr. Irving Kaplansky who shortened some of the 

proofs and extensively revised the first draft of the manuscript. 
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