
CLASSES OF SEQUENCES OF POSITIVE NUMBERS 

E. H. MOORE1 

The results presented in the following pages engaged the attention 
of Professor E. H. Moore at various times, but were never written 
up for publication. Notes dated December 1909 indicate that the 
impetus came in connection with utilization of the "no last absolutely 
convergent series" theorem of Du Bois-Reymond (see General analy
sis, p. 48) and the paper of Landau in Nachr. Ges. Wiss. Göttingen 
(1907) pp. 25-27) in which Landau proves that if {an} is a sequence 
such that ]T)1 a"f>n | converges for all sequences such that ^T, \ bn \

 p, with 
p>\, converges, then ]C | a « l p / ( p ~ l ) converges. This latter theorem 
proved interesting not only because it is a sort of converse to the theo
rem : If Yl\ a* | p converges and if ] j j | bn \ pt(p-u converges then ]T) | anbn \ 
converges, a consequence of Hoelder's inequality, but also because 
the theorem which Landau actually proved was the contrapositive 
equivalent theorem, namely, if ] C l a " | p,(p~~l) diverges, then there ex
ists a sequence such that J^l bn\

 p converges, but X^ l a ^n | diverges. 
By noting the trivial identity an = (anbn)(l/bn), the last theorem has 
the skeleton form : If the sequence {an} belongs to a class Wti (namely, 
the divergent p/(p — l) power) then there exist two sequences {bn} 
and {cn} such that an=bncn, and {bn} belongs to 3W2 (convergent p 
the power) and {cn} to SD?3 (divergent). Since logical questions were 
always of great interest to him, this instance in which the contra-
positive of a given theorem has an independently interesting state
ment led him to speculations concerning the true nature of contra-
positive proof. Among other things he stressed the idea that many 
so-called contrapositive proofs could be formulated to advantage as 
direct proofs. 

From his notes, it appears that the subject matter of the first half 
of this paper engaged his continued attention from December 1910 
to January 1911. But apparently he made no at tempt to write up 
the results for publication until about 1918. However, only a few sec
tions of the manuscript were completed. On several occasions he 
worked out a ''multiplication table" (see end of Part II) and added to 
it from time to time. We have not always been able to connect the 
references which some of these tables contain with his notes, and con
sequently reconstruct his proofs. Instead we have used the final re-
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suits and taken the liberty of arranging the proofs in what appears 
to us as a possible logical order. 

The first part of the paper, which serves as an introduction, gives 
the basic notation and certain general theorems and their interrela
tions (most of which are taken from the unfinished manuscript). In 
the second part of the paper, we give a body of theorems sufficient 
to cover all of the cases of the "multiplication table" which concerns 
itself with a system of classes of sequences of positive numbers, and 
is in a sense closed in this system. The third part of the paper is con
cerned with what Professor Moore called a General Multiplication 
Theorem, which he stated in a letter to T. H. Hildebrandt dated 
January 4, 1926, but gave no hint as to its proof. Since no proof ap
pears in his notes, we have worked out a proof of the theorem in 
question. 

Whether Professor Moore would have approved of the publication 
of these results, since in many ways they seem trivial, we do not 
know. We have found some of these things interesting to play with 
and it is not impossible that they may suggest further results which 
are worth while. The connection with linear functional operations on 
sequences, the closure of the multiplication table, and the fact men
tioned in footnote 5 that the Hoelder inequality basic to the Pring-
sheim-Landau Theorem, and the proof of the Abel-Dini Theorem 
basic to the Landau Theorem, both can be derived from the same in
equality: xe-£\-\-e(x — 1) for 0 < e < l , x>0, are some of the points 
which made these developments attractive to us. 

H. H. GOLDSTINE 

T, H. HILDEBRANDT 

I. INTRODUCTION 

1.1. The class V. We consider throughout sequences of positive num
bers : a = {an}, with an > 0. Such sequences may be regarded as posi
tive-valued functions on the range tylu of positive integers, or geo
metrically as points in the space of infinite dimensions, limited 
however to points all of whose coordinates are positive. We designate 
the space of all such sequences by V and call its elements either se
quences, functions or points. Since we shall be interested only in 
elements of V, it will be understood that the word sequence refers only 
to a sequence consisting of positive terms. 

We shall be interested in certain subspaces or subclasses of F, the 
points of each class being all of the points of F which possess a certain 
property. For convenience we use the same notation for the class 
and the characteristic property, that is, the class P is the class of all 
sequences having the property P . We shall use the standard notation 
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relative to sum and product of classes, that is, PW@, the sum of P 
and Q, or the totality of all sequences which have either the property 
P or the property Q, PC\Qt the product of P and Q, or all sequences 
having both the property P and Q. —P shall be the complement of 
P relative to V9 that is, the class of sequences not having the prop
erty P. 

In an obvious way we say that a class P contains a class Q if every 
element of Q is contained in P . With respect to properties, Q implies 
P if the class P contains Q. Under the circumstances we can speak of 
a monotonically increasing or decreasing set of classes. 

1.2. Fundamental subclasses of V. We consider the following basic 
classes (properties) : 

F: the class of all bounded sequences, that is, of all points in which 
the least upper bound of the coordinates is finite; 

L0: the class of all sequences having zero as limit; 
L^: the class of all sequences having infinity as limit; 
C: the class of all sequences with convergent sum; 
D: the class of all sequences with divergent sum. 

Obviously C = - £ > . 
Any sequence and real number p defines the sequence a p = {#£}• 

For every property P and number p, the property Pp of a point a is 
defined as the property P of ap. Thus Cp is the class of all sequences 
such that ]>[/*» is convergent; Dp is defined in a similar way. 

We note that if 0 < e < / , then the class C/ properly contains the 
class Ce, C-f properly contains C_e, Df is contained in Dt and D_/ is 
contained in Z>_e. Obviously if e>0, then P a n d Pe, Lo and (£o)«, L„ 
and (L^e are each identical. But (L0)-« = (io)-i is L^ and (L*)-* 
= (L,o)-i is L0. P-e is the same as P_i, which is the set of sequences 
such that lim supn ( l / a n ) < <*>, that is, the class of sequences bounded 
from zero. Then — P__i is the class such that lim infw an = 0. 

1.3. Derived classes. If for e > 0 , the system of classes P« is mono-
tonic increasing in e, then we define 

Pi = U P / and P e" - fi P/. 
o</<« />« 

Thus Ci =Uo</<«C/ is the class of sequences a such that there exists 
an ƒ <e such that af is in C. C" is the class of sequences such that af 
is in C for all f>e. 

If for e > 0 the system of classes Pe is monotonie decreasing in e, 
then the inequalities in the definitions are reversed, that is, we define 

Pi - U P / and Pi9 - fi -P/. 
ƒ>« o</<« 
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This applies then to the definitions of Di and D" as well as DLe and 
D"e with e>0. In general P ' is a sum of classes, P " is a product of 
classes. 

The application of these notions to the limiting cases e = 0, 00, is 
obvious, but one can define only the following: 

Co ' : for every e the property Ce; C"0: for every e the property C_e; 
e*, : for some e the property Ce ; CL^ : for some e the property C_ô ; 
Dl : for some e the property De\ DLoi for some 0 the property ZLe; 
-D» : for every e the property De ; DL'* : for every e the propertyZ>__e. 
An application of the same process to the classes C and Df yields 

nothing new in classes, for we have the following results for e>0: 

Ci; (b) n CI = C." ; 

Ci; (d) n C / ' - C ; 

and similar results for classes of divergent series and negative expo
nents. Of these (a) and (d) are obvious. For (b), suppose a belongs 
to Q'. Then a is of Cf for all f>e. Consequently a belongs to CJ 
for all g>f>e, that is, for all g>e. Conversely, suppose that a be
longs to f)/>eCI. Then a is of CI for all f>e, that is, there exists a 
g<f, such that a is of C0. As a consequence a is of Ch for all h>g>e, 
that is, a is of Q'. Similar considerations show the validity of (c). 
In a way the classes P ' are of the nature of greatest of limits of a set 
of classes, and P " of the least of limits, as these results seem to in
dicate. 

1.4. Fundamental systems of subclasses of V. We shall be inter
ested in the following two systems of subclasses of V: 

SYSTEM I 

0, C0", C, ' , Ce, Cl', Cf, C/t C}', C'm, U FC\ - F_i, F o r - F_ l f 

P U - F_ l f - £», I ) .* , £'-/, D-f, D'lf, DLe, ZL«, JDl'., DL*, V. 

SYSTEM II 

V, Di, Di', D., D:, D}', Df, Dj, D'L -LO,-FKJ F _ I , - F or F_ lf 

— P r\ P_i, Loo, CLoo» C~-/> CL/, CL/, CL«, C_«, CL«, C-o» 0. 

In the first system, the classes aie of increasing content, assuming 
0<e<f, each class being a proper subclass of every succeeding class 
(excepting that there js a certain ambiguity in the middle of each, the 
remark preceding holding in each system whichever reading is 

(a) U C! « 

1.31 >T' 
(c) U C," -

o</<« 
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adopted). In the second system the classes are complements relative 
to V of the corresponding classes of the first system, so that the sec
ond system is of decreasing content. 

The proper monotoneity is in general obvious, excepting for cases 
of the type: Ce <Ce<Céf. For this it is sufficient to consider the case 
where e = l. We note that the sequence an — l/n is an element of Ce 

for e> 1, but not for e = 1, that is, is of C{f, but not of &. On the other 
hand if an = l/n log2 n, then a is an element of C\ but not of C9 for 
e<l, that is, of C\ but not of C{. Since P<Q implies P_i<<2_i, we 
get a t once C-e < C-6 < C"e. The corresponding results for divergent 
series follow by taking complements. 

1.5. Multiplications of sequences, and classes of sequence multi
plications. If a = {an) and j8= {bn} are any two sequences of V, then 
aX/3 is the sequence {anbn} of F. 

In a similar manner if P is the class of sequences a having the 
property P and Q the class of sequences j3 having the property Q, 
then we denote by PXQ the class of sequences aX/3 with a in P 
and jS in Q, that is, y is in PXQ if and only if there exists an a of P 
and a /3 of Ç such that 7 = a X j 3 . The Pringsheim-Landau Theorem 
gives a characterization of the classes PXQ, where P = Ci/e, Q = Ci//, 
and PXQ = Ci/(ô+/), e > 0 , / > 0 . 

By analogy, we define the class P/Q as the class of all elements y 
such that for all /3 of Q> the product sequence yXp is of P. The Lan
dau Theorem states a result for the class P/Q for the case where 
P = Ci/(,+ƒ>, and Q is &//, namely, that P/Q is the class Ci/e, e>0, 
ƒ > 0 ; or as a matter of fact, where P is &, Q is Cp and P/Q is CV with 
£ > l a n d (l/p) + (l/p')=l. 

The following relations are self-evident: 

1.51 PXQ = QXP;(PX QU = P- i X Q_i; (P/Q)-i = P - I / G - L 

There also exist relations between the product and quotient proc
esses embodied in the following theorem : 

1.52 P/Q = - ( Q X - P- i ) - i , 

from which we deduce by an obvious substitution the corollary: 

1.53 P X Q = - ( - P - i / 0 - i . 

For the proof suppose that P/Q=R, that is, y in R is equivalent 
to a 7 such that, for every /? of Q, it is true that y Xj8 is in P . Then y in 
— R is equivalent to a 7 such that there exists a j8 of Q for which 
7X/3 is of - P . Let 7X/3=<2. Then pXorl=>y~l. Then 7 of - P - i is 
equivalent to a 7 such that there exists a j8 of Q and an a of — P_i 
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such that y—pXoc, symbolically: 

- i ? - i = Ö X - P- i and so R = - (Q X - P -0 - i . 

The following additional equivalences are now obvious: 

1 54 ' / 6 - - ( 6 X - P-O-i - - (Q-i x - P) 

« - ( - p x Q-i) = - G - i / - P- i . 

1.55 p x 0 = - (~ p - i / e ) - ! = - ( - Q - I / P ) - I . 

A theorem of the form PXQ—R or P/Q = R can be divided into 
parts, namely, PXQDR, P X Q C P , and P/QDR and P/QCR re
spectively, the theorem being considered as a relation between the 
classes. A theorem of the form PXQDR is called a factorization theo
rem since it asserts that if y is of R then there exists a of P and /3 of Q 
such that a X / 3 = 7 . A theorem of the form PXQQR will be called a 
multiplication theorem, since it asserts that if a is of P and j8 is of Q 
than «Xj8 is of P . A theorem of the form P/QCR will be called a 
division or Landau theorem, since it asserts that if a is such that for 
every j8 of Q it is true that aXj3 is of P , then a is of P . The theorem 
P/QDR is really a multiplication theorem since we have: 

1.56. P/QDR is equivalent to RXQCP. 
For the statement P/QDR is equivalent to the statement that if a 

is of R then, for every /3 of Qf it is true that aXfi is of P , which is 
logically equivalent to : if a is of R and ]8 is of Q then ceX/3 is of P , 
that is, a multiplication theorem. We have as an immediate corollary: 

1.57. P/QDRis equivalent to P/RDQ. 
Since P/Q is the same as —Q_i/ —P_i, we have also the following: 
1.58. P/QDR is equivalent to —Q-i/—P-OP is equivalent to 

—P_i/ — P _ O Ç is equivalent to —Q^i/RD — P - i w equivalent to 

- U - i / C D - P - i . 
The theorem and corollary also give: 
1.59. PXQGR is equivalent to P X — P - i C — ö - i is equivalent to 

- P - x X G C - P - i . 
We note however that the theorem and corollary are not in general 

true if the implications are reversed, that is, we have: 
1.510. P/QCR does not always imply QXRDP. 
1.511. QXRDP does not always imply P/QCR. 
1.512. P/QCR does not always imply P/RCQ. 

Instances of these are the following, which depend on theorems to 
be proved later: 

ad 1.510. T a k e P - L o , Q = &, R = F. Then by 2.43 

P/Q = L0/C1 = - (Ci X ~ L j - i « P. 
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On the other hand by 2.41 

Q X R « Cx X F « Ci, 

and Ci does not contain L0 = P . 
ad 1.511. Take (? = Ci, R=L0t and P = Ci. Then by 2.44 

C X R = dXLo = Ci, 

but by 2.21 

P/Q = Ci/Ci « - (Ci X - CLO-i - - (Ci X D-i)-i - F 

and F is not contained in J R = L 0 . 
ad 1.512 T a k e P = Z 0 , Q = Cand P = P. Then as in 1.510, P/QCR, 

but by 2.41 

P / # = Zo/F = - ( F X ~ Z J - x = Lo 

and Lo is not contained in C. 
Other instances of 1.510 and 1.512 are obtained if P = V, Q = 0 and 

Even so, every division or Landau theorem is equivalent to a fac
torization theorem, and conversely, but the equivalence is not as sim
ple as one might expect. We have : 

1.513. The statement P/QQR is equivalent to the statement QX — P-i 
D-R-i. 

This follows immediately from 1.52 
In view of these theorems, we shall in the sequel focus primary 

attention on the product class PXQy of two classes P and Q. We em
phasize however that while a theorem of the form P/QZ)R has as its 
equivalent the form QXRQP, a theorem of the form P/QCR has 
the more complicated equivalent QX —P_iD — i?_i. 

1.6. Set addition and set product. We consider next the effect of 
set addition and set product on the theorems of multiplication and 
factorization type. We have the following theorems. 

1.61. THEOREM. If Pp and Rp are any systems of classes such that for 
every p: PPXQDRP, then (UPP) XQDl)RP. If for every p: PPXQCRP, 
then ( U P p ) X 0 C U P p . Consequently if PPXQ~RP then (UPP)XQ 
= UPP . 

1.62. THEOREM. If for every p: PPXQCRP, then ( n P P ) X Q C n ^ p . 

These theorems follow immediately from the definitions. How
ever, conclusions concerning (f)PP)XQDr\RP as a consequence of 
PpXQ'DRp for every p are not so immediate. Suppose for instance 
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that P1XQDR1 and P2XQDR2, and assume 7 is of JRiH^. Then 
there exist a i of P i and j3i of Qi and a2 of P 2 and ft of Qi such that 
7=<x1Xj3i=a2Xj32. In order that 7 be of (Pir \P 2 )X(?, it would be 
necessary to establish the existence of a single /3 of Q and an a of 
P\C\Pi such that 7=*aXj3. A sufficient condition for this can be ob
tained as follows. If Q has the dominance property2 Ai (if /3i and j82 

are of Q then there exists a /3 of Ç such that /Sèft and jSèft (point-
wise)) and if a —y/f3 g 7/181 =ai and a=7/j3^7/j32=ce2 were in both 
P i and P2 , then 7 would have the property desired. This would cer
tainly occur if the classes P i and P 2 had the dominance property A0' : 
if «i is of P and aSoti then a is of P . Since the same method of proof 
would apply to a finite number of classes we can state the theorem: 

1.63. THEOREM. If Q has the dominance property Ai and Pi, • • • , P n 

have each the dominance property A0', and if P%XQ~DR%for each i, then 
(CiPi)XQD(]Rù 

The case when sequences of classes {Pm} and {Rm} are involved 
would obviously require some alteration in these conditions. We re
place the property A0' by the following modification : 

A class P of sequences has the dominance property A0" if any se
quence a which is ultimately dominated by some sequence «o of P 
belongs to P . 

We replace the dominance property Ai by one involving a sequence 
of elements, and define : 

A class Q of sequences has the dominance property K if for any 
sequence of elements j8i, • • • , j8w • • • of Q there exists an element j8o 
of Q so that each /3m is ultimately dominated by /So, that is, if 
j3w = {bmn} and j8o = {&on}, then lim supn bmn/bon g 1 for all m. 

An examination of the proof of the simple case above shows that the 
same method will give the theorem : 

1.64. THEOREM. If each of the classes Pm has the property A0", and 
Q has the property K, and if PmXQDRm, then we have (Ç]Pm)XQ 
D(]Rm and consequently if P m X Ö = Pm then (f| Pm) X Q = (] Pm. 

All of the classes in System I have the property Ao / . On the other 
hand the dominance property Ai is not found in the classes —-P-i, 
F\J — P_i, P H — P_i, —Loo, £>__,. These do not have the additive prop
erty either. For instance, for D_i, if an = w2 for n even and n for n 

2 For dominance properties see E. H. Moore, Introduction to a form of general 
analysis, Amer. Math. Soc. Colloquium Publications, vol. 2, New York, 1910, pp. 39-
41. Since we have used the letter D to signify divergence, we shall use the correspond
ing Greek letter A for dominance properties. 
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odd, while bn~n for n even and n2 for n odd, then a and j3 belong to 
ZX_i but a+j8 does not,3 and a and j8 do not have a common dominant 
in D_i. 

The dominance property K is obviously implied by the dominance 
property4 K0i which is defined as follows: For any sequence of se
quences |3m of Q there exists a sequence j30 such that limn bmn/bon — 0 
for every m. The classes V, Ce and i o have the property Ko and con
sequently if, as demonstrated in Introduction to a form of general 
analysist pp. 44 ff., but since ZX,« does not have the property Ai, even 
in the ultimate sense, D-.e does not have the property K. 

For purposes of reference, we mention the following theorem whose 
proof is obvioute : 

1.65. THEOREM. If P1CP2, then P1XQCP2XQ. Consequently if 
P i X < 2 = P 2 X ( ? = P , and if P 1 C P C P 2 , then PXQ=R. 

II . T H E CLASSES PXQ IN SYSTEM I 

In this part we shall prove theorems sufficient to characterise the 
class PXQ whereP and Q are any two classes in the System I of 1.2. 
In view of Theorems 1.52,1.53 and 1.54 this will give not only a com
plete set of multiplication and factorization theorems in this system, 
but also division or Landau theorems. We note that corresponding 
theorems for the classes of System II are immediate consequences of 
those in System I, since when P is in I then P_i is in II, and PXQ — R 
implies P_i X Q-i = P- i . 

2.1. We note in the first place: 

2.11. THEOREM I. - P _ i X ~ P - i = F . 

Since the multiplication of any two sequences is a sequence, it is 
only necessary to prove that if 7 = {cn} is any sequence, then there 
exist two sequences a = {an} and j8 = {bn} such that lim inf an = 0, and 
lim inf ôn = 0 and cn~anbn* For this purpose we set an = l/w, bn = cnn 
for n even, and an = cnn, bn = l/n for n odd. 

An immediate consequence of this theorem is : 
2.12. P X Q = F for all P and Q of the system I, such that - P _ i C P 

C F , -F-iQQQV. 
For under these circumstances we have 

V = - P_x X - F_i C P X Q C V. 

As an instance of this we might note J9-_#X-D-/= V. 
8 As a matter of fact P^-f #-1 « V, 
4 Cf. Moore, loc. cit. p. 44. 
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2.2. Hoelder-Landau theorems. 

2.21. THEOREM II . We have (a) CeXCf = Cef•/<•+/) if e>0, f>0; 
(b) C9XD-f=D-efne„f) if e>f>0; (c) CêXD-f=-F-iiffèe>0. 

The first of these: (a) is mentioned in the introduction. From the 
inequality:5 (e+f)(ab)l«e+» Seal/e+fb11' it follows that if a is of &/• 
and j8 is of Ci// then aX/3=Y is of &/(«+/). The substitution e' = l/e, 
ƒ' = !/ƒ, £ = ! / (*+ƒ) =* 'ƒ ' / (* '+ƒ) gives the result CVXCVCC,. Con
versely suppose 7 is of Ca with g^ef/Çe+f). Set a^y9le and /3=y0,f. 
Then a is of Ce and j8 is of C/, so that CeXCfZ)C0. 

For the second part (b) of this theorem, we use from 1.59 the 
equivalence of PXQC.R to PX — R-iG — Q-i, so that part (a) yields 
CeXD-gCD-f. Setting g = ef/(e+f) =ƒ' and ƒ = g' gives g'=ef'/(e-f), 
so that we must assume e > / ' , that is, we have, dropping primes, 
CeXD-.fC.D-ef/(e~f). The converse of this statement, that is, C«X£>-/ 
DD^//({_/), is the contrapositive of the Landau Theorem. Assume that 
y is of D_ff, where g=*ef/(e--f), and set a = {sn} = {]£?<£'}. Then by 
the Abel-Dini Theorem,6 y-°X<r~~v is of Ci for z;>l and of D\ for 
fl^l. Consequently if we let a—y~*0,eXcr~llf and ceX|3=y, that is, 
P=yo/fXa1/f

t then a6=y~eX<r~~e,f which since e>f is of Ci, so that a 
is of Ce, while p~f =y-oXa~x is of A , that is, |8 is of £>_/. 

Note the similarity in form between the first two parts of this theo
rem. 

For the last part (c) of this theorem, we show first that C9XD-f 
C — F-h using a contrapositive method of proof. Suppose a={an} 
is of C9 and /3= {bn} is of D-f and if possible lim inf anbn>0. Then 
there exists an e 0 >0, such that for all n, anbn>eo. Consequently 

X) an à e0(]L
ôn ) = °°, 

n 

that is, a is of Df contrary to hypothesis. On the other hand we show 
that C«X-D-/D — F-i for any positive e and ƒ. Let 7 = {cn} be such 
that lim inf cn = 0, and select a sequence ce0 = {a0n} from Ce. For each fe 
determine nk>nk~.i so that cnjfc<a0*, and define the sequence a={an} 
as follows: an =a0n if ^5^nk , an~cn for n~nk. Then obviously: 

5 This inequality can be deduced from the well known inequality: x* ££ 1 -HO* — 1), 
O ^ e ^ l , * >0. Replace «by A/B, with 4 >0, and B>0. Then A'B^geA + Q -e)B. 
Let e=*f/(f+g), ƒ >0 ,g>0 . Then l - e - g / ( / + g ) . Also set A'~a, and £* = &. Then the 
inequality {f-\-g)(ab)1l<f+ri£ifa

1V+gb1l<' results. We might note that Xe ̂  l-\-e(x-l) 
for e> 1, and £ <0, and that each of the three cases can be deduced from each other. 

8 See for instance Knopp, Infinite series, London, 1928, §39, p. 290. Note that 
the C\ property follows from the initial inequality of the preceding footnote. 
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that is, a is of C6. Obviously bnk = 1 for all k. Hence j8 = {bn} is of D-f 
for a l l / , or of DL^-

An examination of the proof just given shows that it applies to a 
much wider group of classes. In particular we have: 

2.22. PXQD —F^i, for any class P contained in L0 and any class Q 
containing —£«,. 

From the fundamental Theorem 2.21 we obtain theorems concern
ing PXQ — R where P and Q are sums and products of classes of the 
C or Z>_i series. The procedure is illustrated in the proof of: 

2.23. THEOREM I I I . If 1/g^l/e + l/f or g = ef/(e+f), then 

a xc/ = c: x c; = a x cy « a 
while c.xcy = cyxcy = ci'. 

From C0XCf = Co, we obtain as a consequence of the sum theo
rem 1.61 

( U Ce)xCf= U CV or C'eXCf = Ci, 
\ 0 < < ? ' < e / 0<g'<Q 

since g=zef/{e-{'f) is continuous and monotonie in e for fixed/. By 
repeating the operation we get since l)g><gCg' = C/ : C£ XCf —Cg'. 

Since Ce has the property K for all e>0, as well as the property 
Ao' , we can also apply the product theorems 1.62 and 1.64 to 
CeXCf — Cg and obtain C0XC/' =Cg", it being assumed that ƒ runs 
over a monotonie decreasing sequence approaching/, and the corre
sponding gf obviously approaches g in the same way. If we apply the 
sum theorem 1.61 to this result we obtain by 1.31c 

ci xc," = u cv =c;. 

Finally to prove that Ci' XC}f = C a " , we note that by 1.62 we have 

n cixc/'c n cj', that is, cy xc/' c c 
«'>« o'>o 

On the other hand since Ci'Z)C6i we have 

Ci' =CeXC}' CCi' X C / ' , 

from which two statements the desired conclusion follows. 
We might note that if in the proof of Ci XCJ' = C0' we had started 

with the identity Ci X C/ = CJ and been able to apply the product 
theorem then the equality Ci XC}' « C / ' would have resulted, in 
other words the product theorem 1.64 is not applicable. Since the 
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class C/ has the property A0", it follows from this that the class CI 
does not have the property K. 

For the case where e = oo, we need consider only C^. We obtain at 
once f o r / > 0 : <?'„XC> = C"*,. From this follows at once: C'^XC}' 
~C'wXCf = C'„XC/ -CmXCm~C'„. 

For the case where £ = 0, we need consider only the class Co". Ob
viously Theorem 1.64 also applies here if ƒ 5^0, that is, we have 

C o " X C / = C0" for all 0 < / < o o . 

Consequently for the same range of ƒ we have also 

0 A t / - Oo /\ C / — C o / \ Coo — Co . 

It is further obvious from 1.62 that Ci' XCi' CC 0 " . To prove the in
clusion in the other direction, we take an arbitrary sequence y of Có' 
and let a =7^2 and j8 = Y1 /2 , and then obviously a and ]8 are of Co". 

We incorporate all of these results in the form of a theorem. 

2.24. The classes of System I between Có' and C^form a closed sys
tem under multiplication (X) , the various multiplications can be read 
from the following table, in which g=ef/(e+f) : 

Co" 

C.' 

c. 

Ci' 

cM 

Co" 

Co" 

Co" 

Co" 

Co" 

Co" 

c; 

Co" 

Ci 

Ci 

Ci 

cM 

c, 

Ci' 

Ci 

c, 

Ci' 

C. 

Ci' 

Ci' 

ci 

Ci' 

Ci' 

cm 

cM 

Co" 

cM 

C' 
C*, 

C' 
Coo 

C' 
Coo 

We turn next to the extension of 2.21(b) to the classes C', C", B' 
andl>" . We have: 

2.2S. THEOREM IV. Ifg = ef/(e-f) and e>f>0, then 

C\ X D-f = Ce X DLf = C'e X DLf = Ce X D"t = C" X DL, = DLg 

and C.XDÜf=G' X P - / - C . " XD'Jf**DL',. 

Starting from the equation CeXD-f=D^gf the methods of proof 
used for 2.23 or Theorem III apply here also, with the exception of 
the characterization of the classes C " XDL/ and Ci' XD-/. For the 
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class Ci' XDLf, we note that the product theorem 1.62 applied to 
C,XD-.fCD-g yields C." X-D-/CD'-V Applying the sum theorem 
1.61 and also 1.31c gives Ci' XDLfCDLg. On the other hand 
CyxDLfDC.XDLf^DLg. So that Ci' XDLf = DL0. 

For the class Ci' XD-/> we need only show that it contains D"g, 
as the inverse inclusion is contained in the preceding paragraph. It is 
not permissible here to use Theorem 1.64, because D~f does not have 
the dominance property K. Instead we proceed directly. Suppose that 
7 is of D"g, that is, there exists a monotonie increasing sequence gn 

approaching g, such that y is of D^0n for every n. Let en be determined 
from the equation gn=enf/(en— ƒ), so that en approaches e monotoni-
cally decreasing. Since D-gn = CenXD-f there exist an= {anm} of C„n 

and /3n={bnm} of D-f so that y~anXfin for every n. Let the se
quence dni with 0 <dn < 1, be such that]£/Zn converges. Determine the 
sequence tnn>tnn-i so that 

^2 an
n

m < dn, ^2 bnm > 1. 

Define am=anm and bm = bnm for mng£m<mn+i, with am=aim and 
bm = bim for m gwi . Then obviously 7 =aX/3. o: belongs to Ce for every 
e'>e since a w < l for m^mh so that if e'>eny m>mi, then a£<aj£ 
and consequently X^m„öw<2Z^n. Obviously ]8 belongs to Z>_/. 

The equation Ce' XDL/ — DLa could also have been deduced by the 
sum theorem 1.61 from Ci' XD-f = D"g. Also the case e = 00 which 
concerns C^ follows immediately so that we have f o r / > 0 

CL X D-f = CL X DLf = C^ X />-ƒ = 7)1/ 

and C,
00XD'-o = Di-o. 

2.26. THEOREM V. If 0<e<f, then C{
e
l) XD%= - F-h where C6

(1) 

may be either Ci, C« or Ci' and D^f may be either DLf, D_/ or D'is. 

This is an immediate consequence of the inclusion theorem 1.65. 
For the case e =ƒ, Theorem IV separates into two parts, namely 

C9 X D-e = C'e X D-e = Ce X üLe = Ce X Die 

= Ce X D"e = C'i X DLe = - F _ L 

This includes also the case where e = 0 or 00, namely 

2.28 CL X I C = CO X D - o = - F-i. 

On the other hand 
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2.29 C" X D-, « C. X D". = C" X I?- . = D^. 

For 2.27 the first class is covered in 2.21(c), the next three classes 
each are contained in CeXD~9 and by 2.22 contain — F-i. For the 
last two the method of procedure is 

C'. X JDd. « ( U Cf) X Z>1'. = U (C/ X />"*) « - F . i , 
\ / < e / ƒ<• 

C " X Z>1. = C'/ X ( U D-l) = U (C_, X o-/) = - F-i. 
\f>e / ƒ>« 

The first of these two is also valid for 6= oo and the second for 6 = 0, 
giving 2.28. 

For 2.29 the methods used in the proof of the corresponding results 
in 2.25 are applicable. 

To finish this group of cases, we need to consider yet the possibility 
of having e = 0, that is, the class Co'; ƒ = 0, that is, the class DLo; and 
the case ƒ = oo, that is, DL*. 

For Co" we have: 
2.31. CQXP— — F-i for every class P between and including —F-i 

and DLo. 
In 2.28 it was shown that Co' XDLQ = — F-i. So it remains to prove 

that Co" X — ^ -1= —F-i. I t is obvious that since Co" C.F, we have 
Co" X— -F-iC — F-\. On the other hand suppose 7 = {cn} is of — F-i 
and let a0 = {#on} be any element of Co' ' , that is, ]C*aon < °° for e > 0. 
Select a sequence nk so that cnje<aok/k. Then define an =aon for n^nk 
and an~aok for n=nk. Then obviously Ylnae

n<2j2naont for e>0, that 
is, a is of Co". On the other hand since bnk~cnk/ank=*Cnk/aQk<l/k, 
iSisof - # _ ! . 

For DLo we have : 
2.32. DLoXP — DLofor all classesP between Co" and F, including F. 
Obviously DL0XF = DLo. I t is then sufficient to prove that 

DLoXCe—DLo for all e > 0 , which follows immediately from 2.25, 
namely, CeXD-.f = D-g, by applying the sum theorem 1.61. 

For D'l* we have : 
2.33. DL* X P = — F-i for all classes P between and including Co" 

and C^,. 
The equality D'J^XCo' = —F-\is included in 2.31. Since for every 

e > 0 , Ce has the dominance property K, we can apply the product 
theorem 1.64 to CeXl>-/ = - J F U to obtain CeXD'l« = - F _ i , for all 
e > 0 . Applying the sum theorem 1.61 to this equality yields C^XDL^ 
« - F - i . 
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2.4. The classes between L0 and — L*. We consider next results 
involving the classes L0, P H —P_i, F, — P_i, P U —P_i, —£<», so far 
as they have not been previously treated. We have: 

2.41. FXP^Pfor every class P of System I. 
Since the sequence a = {1} is of P, it is obvious that FXPDP- On 

the other hand, since all classes P of System I have the property AÓ', 
FXPCP. 

2.42. — P _ i X P = —F-ifor any class P contained in or equal to P. 
Since - P_i X P C - P-i, it follows that - P _ i X P C - P - i for all P 

contained in F. On the other hand suppose y = {cn} is of — P_i. Se
lect a j30= {bon} of P , and the sequence nk so that cnk<bok/k. Let 
bn = bon iîny^nkj and bn = bok if n = w&. Then if an = cn/bni it follows that 
lim infw an = 0, that is, a is of — P_i. But for the classes P of System I, 
P={bn} is of P if j3o is. 

Since -F-iCFU — F-iC-LvCD'J», we can conclude from 2.33 
and 2.42 tha t : 

2.43. - F . 1 X P = ( F U - i ? . 1 ) X P = ( - I o o ) X P = P , . ' » X P = - F - i 
/or all classes P between and including C" and C^. 

2A4:. LoXP*=P for all classes P between and including C0" and L0, 
and also between and including D'J* and DLQ. 

Since L 0 C P , and FXP^P for all P it follows that UXPQP for 
all P . An analysis of the statement L o X P D P shows that it is equiva
lent to the fact that the classes P have the dominance property7 K^ 
namely, that if a = {an} is of P , then there exists in P a n a o = {#on} 
such that limn an/uon = 0, which in turn is related to the "no last ab
solutely convergent or divergent series" theorem. The proof for C\ = C 
and consequently for Ce can be based on the Abel-Dini Theorem for 
convergent series.8 Let 7 = \cn) be of C and let p={rn} =^2inCm. 
Then 7Xp""x+e is of C for e>0. If we set a = 7 X p ~ x + e , then /3 = px-*e 

which is of L0. For the other classes between and including Co ' and 
C'm we can apply 1.61 and 1.64, since Lo has the property K. For 
LOXLQQLQ, we take o:=j3=71/2. For the class £>_i, we utilize in a 
similar way the Abel-Dini Theorem for divergent series, that is, de
fine «=7X0*, where <r= {CCîO""1} s 0 t n a t fi—<*~1 which is of Lo. 
The extension to L>_« and the other classes between D'J* and DLo is 
then similar to that for the C. 

2.45. (FC\ — P-i) XP=P for all P between Co' and L0 inclusive and 
D'l* and DL0 inclusive. 

This is a corollary to 2.44 and 2.41 in view of the fact that 
P D P n - P _ O L 0 . 

7 See Moore, loc. cit. p. 44. 
8 See Knopp, loc. cit. p. 293. 
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These theorems while they cover a wide range still leave a few par
ticular cases. We have : 

2.46. -L^XU^-F^ - L w X ( F n - F - i ) - - L * . 
From the definitions it is obvious that —L^XLoQ — F-u for if 

Û!= {an} is of —Loo, then an contains a bounded subsequence, so that 
if /3 = {bn} is of L0, then lim infn anbn = 0. On the other hand suppose 
that 7 = \cn} is of — F-i. Let a 0 = {a0n} be any element in LQ and 
select an increasing sequence tik so that cnk^aok. Then define a = {an} 
so that an = aon f or # ^ w& and an = #o* for w = w&. Then 6njfc = cnJank ^ 1 
so that jö is of —•£«> and a is of Lo. 

For the second part, it is again obvious that —LOCiX{Fr\ — FL~l) 
C— Loo. On the other hand let 7 = {cn} be of —Loo, and let {cnk} be 
a bounded subsequence of {cn}. Let fln™^ if n^rih and an=*cnn if 
n^nk. Then &n = 1 for w = «* but 6n = 1/w f° r w ̂  w* s o that a is of —L* 
and ]8 is of F^-F-i. 

2.47. L0X(FV-F-i) = -F-i. 
This is a consequence of 2.42, namely, L 0 X ( — -F-i) = — F-i, and 

2.46, namely, L0 X ( - £ „ ) = - ^ - 1 , and the fact that - F-iCFU - F-i 
C - L . O . 

2.48. (FU-F-ÙXiFri-F-à^-F-i. 
We have (Ff^ - F„i) X F ~ FC\ - F-x and C F n - j F l i ) X - F - i 

= - ^ _ i , by 2.41 and 2.42. By addition we then get 2.48. 

2.49. (Fn-F_i)x(Fn~^i)=Fn-F_i. 
This is obvious. 
2.5. The classes V and 0. We finally consider the classes V and 0 

and note: 
2.51. PXV^Vfor all P of System I excepting 0. 
2.52. P X 0 = 0 for all P of System I. 
These are self-evident. 
I t may however be of interest to apply Theorems 1.52 to these re

sults in order to obtain corresponding division theorems. Thus 

0/0 - - (0 X - O-O-i - - ( O X TO-i = V, 

V/V = - ( F X 7_i)-i = - (V X 0)-i = 7, 

p/O « - (0 X - F - 0 - i " ( O X 0)^x = 7, 

0 / F - - ( F X - 0-i)-i « - (F X F)-i = 0. 

Of these 7 / 0 = F is an example available for 1.510 and 1.512. 
We have collected all of the results of this part in the form of a 

table, indicating in each place the particular theorem on which the 
entry is based. Because of the fact that PXQ — QXP, it is obvious 
that it is sufficient to fill in only one half of the entries, as the re-
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C. 

c. i 

C". 

Cj 

Cf 

C't 

c, 

Lo 

FH-F^ 

F J 

-F^ 

FU - F - , 

~XoO 

£ " - 0 0 

P'_, 

D-f 

D"-f 

D'-

D-* 

D"-

D'-o 

V 

0 

0 
2.52 

C"o 

0 
2.52 

C 0 
2 24 

C', 

0 
2 52 

2.24 

C"e,2 

2.23 

C. 

0 
2.52 

C"0 
2.24 

C'e/2 
2.23 

Ce/2 j 
2.21 

c . 
0 

2,52 

C'"o 
2.24 

C"e/2 

2 23 

0 e/2 
2 , 2 3 

C"e/2 
2,23 

Cf 

0 
2.52 

2.24 

c, 
2.23 

2.23 

c. 
2.23 
C//2 
2.231 

Cf 

0 
2.52 

C"0 
2.24 

C0 
2.23 

2.21 

C0 
2.23 

C//2 
2.23 

C//2 
2.21 

Cf 

0 
2.52 

C"0 

2.24 

C0 
2.23 

2.23 

C"a 
2.23 

C//2 
2.23 

C"//i 
2.23 

C"//2 
2.23 

C'* 

0 
2.52 

2.24 

C'oo 
2.24 

C'oo 
2.24 

2.24 

2.24 

C * 
2.24 

C'oo 
2.24 

2.24 

Xo 

0 
2.52 

C"o 
2.44 

C', 
2.44 

Ce 
2.44 

C". 
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mainder can be obtained by reflection on the diagonal. We note that 
System I is a closed system under multiplication. Also we recall that 
with this table it is possible to make a corresponding table of division 
theorems by using 1.52. 

I I I . A GENERAL MULTIPLICATION THEOREM 

3.1. On classes (P — Q) X(i? —5). In the preceding part, we made 
a study of the classes PXQ, where P and Q are any two classes chosen 
from System I. We noted that the theorems of that part gave rise to 
theorems relative to the class PXQ if P and Q are both in System II, 
because of the fact that if P is in I, then P~i is in II , and from 
PXQ=R it follows that P_i X (?-i = P- i . A natural question is to 
characterize PXQ if P is in System I and Q in System II . The answer 
to this happens to be trivial. For we have: 

3.11. THEOREM. If P is in System I and Q in System II , then 
PXQ—V, unless P or Q is the null class 0, in which case PXQ = 0. 

To prove this theorem, it is obviously sufficient to consider only 
the case in which P = Co" and Q=*C"0. Further since P X Q is con
tained in V for any P and Q, we need only show that if y = {cn} is 
any sequence of F, then there exist a = {an} of Co" and /3= {bn} of 
C1'0, such that cn—ajbn. We note that if a is any sequence of Co" and 
if we define j8=7Xcr*1 then /3 will be of Ci!0, provided y is bounded 
from zero, that is, in P_i. Also if /3 is of C"0 and a=yXfi~l, then a is 
of Co if 7 is bounded from infinity, that is, in F. Assume then that 
7 is in — F-\C\ — F. Then divide the sequence of integers n into two 
mutually exclusive ordered sets ni for which cn}zl and ni1 for which 
c w < l . Let aQ be any element of Co" and j3o any element of CIV De
fine a= {an} as follows: 

an = aok if n = ni, an = cn/bok if n = ni'\ 

so that 

bn = cn/aok if w = ni, bn = b0k if » = ni'. 

Then obviously a is of Co' and j8 is of C1'0. 
The System I (as well as II) defines also classes by taking differ

ences, particularly the class P — Q where P properly contains Q. Since 
if P is in I then — Q is in II, and conversely, the classes P — Q are 
really products of a class in I by one in II . There arises the question 
of the characterization of the classes (P — Q) X (R — S). If we note that 
P — Q is in fact PC\ — Q, then if a product theorem similar to 1.51 were 
universally applicable, we might guess that 
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(M): (P - Q) X CR - S) - (P X *) H ( - Ö X - S). 

If (2 = 5 = 0, or P = P = F , the identity is trivial. If we take Ç = 0, 
R = V then the guess would give 

P X - S = ( P X F ) n ( - 0 X - S ) = F 

since P 7*0 and 5 5* V. If P and 5 are in I, then —5 is in II and this is 
Theorem 3.11. The object of this part is to determine limitations on 
the classes P , Q, R and S so that the equality (M) is valid in Sys
tem I. Corresponding results for System II follow. Throughout this 
part it will be assumed that P properly contains Q and R properly con
tains S in the differences P — (?, P — 5. 

The method of procedure will be to find conditions for the validity 
of the equations 

(P-Q)XR = PXR and (P - Q) X - S = - Q X - 5, 

which are the special cases of the general equation f or Q = 0 and R = V, 
respectively, and from these to derive the general equality. 

I t is however not necessary to prove both of these two equalities, 
since we have : 

3.12. THEOREM. A theorem of the form (P — Q)XR = PXR has as 
consequence a theorem of the form (P7 — Q')X — 5 ' = — Q'X— S', and 
conversely. 

For if ( P - ( 2 ) X P = P X P , then ( P ^ - Q - O X P - ^ P - i X P - i . Now 
if P is in I, then P_i is in II , and — P_i is a member of I. If we set 
P ' = — Q__h Q' = — P_i, S' = — P_i, then obviously Q' is properly con
tained in P' and our identity becomes 

(P ' - 00 X - S' = - Ö' X - S'. 

Because of the dual nature of these two equalities, we shall refer 
to the process of substitution involved as a dualizing process. 

We might also note that the Systems I and II are combinations of 
half of the System I, namely, 

0, Co , Ce > C«, C0 , Coo, Lo, F {~\ — P_i, P. 

If we denote this set of classes by la, the balance by lb, and similarly 
for II , then 

3.13 lb = - (Ia)_i, Ha = (Ia)_i, and l ib = (Ib)_i = - la, 

so that 

I « (la, lb) = (la, - (Ia)_i) and II = ((Ia)_i, - la). 
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3.2. On the relation (P-Q)XR = PXR. I t is obvious that if Q is 
properly contained in P , then (P — Q)XR is contained in PXR. 
Hence we need to derive only sufficient conditions so that (P —Q) XR 
contains PXR» In order to state a general theorem easily, we define 
a dominance property related to two classes, namely: 

3.21. DEFINITION. The pair of classes P , Q with P properly con
taining Q have the dominance property K2 relative to each other, if for 
any element /? of Q there exists an element a of P — Q which ultimately 
dominates /3, that is, an^bn for n>n0. 

Also dually: 
3.211. DEFINITION. The pair of classes P , Q with P properly con

taining Q have the dominance property i?2 relative to each other, if 
for every a of — P , there exists a f3 of P — Q such that j3 is ultimately 
dominated by a. 

We then have the following theorem. 

3.22. THEOREM. If R has the dominance property A0", and P and 
Q have the dominance property K2 with respect to each other, then 
(P-Q)XRDPXR, and so (P-Q)XR=PXR. 

The proof of this is almost self-evident. Suppose ô is of PXR, that 
is, there exists a of P and y of R such that ô =otXy. If a is of P — Q, 
no further steps are necessary. If however a is of Q let j8 be of P — () 
ultimately dominating a and set 7i = ôXj3~1=aX7X|8~1 . Then 71 is 
ultimately dominated by 7 and so of P , that is, ô=j3X7i is of 
(P-Q)XR. 

In order to apply this theorem to the case where P , Q and R are 
classes in System I, we show: 

3.23. If P and Q are any two classes of System I, P properly contain-
ing Q, and excluding the case where P is P U — P_i, then P and Q have 
the dominance property K2 relative to each other. 

The method of demonstrating this property for any two classes of 
System I chosen from la, that is, those lying between 0 and F inclu
sive, is illustrated by the following special case: 

3.231. P = Ce, Q = C Let a be any element of Ci. Then since by 
1.4, Ce properly contains Ce', there exists an element j30 of C« — Ci. 
Define j8 so that bn=bon if an^boni and bn=an if anèzbon. Then since 
j8 èj8o, it follows that /? is not of Ci. On the other hand since 

S *n = ] C bon' + 2 3 an < X ) ^On + Z ^ #n 

it follows that j8 is in C6. 
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I t is obvious that in this proof we used the fact that — Q has the 
property A0' in reverse, which is true for all Q in System I. Further 
we have used the fact that if a and j8 are sequences of P , then 7, 
the greater of a and j3, is also in P . This holds for all of the classes of 
System la, excepting FC\ — P_i. However the procedure above is still 
effective in this case, since if 0 is of Q and Q is properly contained 
in FC\ — P-i, then a is of L0. If j8 is of P H — P_i, and a is of L0, then 
the greater of a and |8 is still in PP\ — P_i. Hence we have the theorem : 

3.232. THEOREM. Any two classes P , Q with P properly containing Q 
from System la have the property K2 relative to each other. 

This is no longer true if we continue in the System I; we have: 
3.233. The class F U - f - i does not have the property K2 relative to 

— P_i, or relative to P, but it does have the property K2 relative to 
FC\ — F-\, and so relative to all the other classes of System I. 

Let a be an element of — P_i for which both lim sup an = °°, and 
lim inf an = 0. Then there exists in P U —P_i no dominating element 
belonging to — ( — P_i), that is, P_i. Similarly if a is in P with 
l i m i n f a n > 0 , there does not exist in ( P U — P_i) — P, that is, in 
— P-if^ — P, an element dominating a. On the other hand let a be
long to FC\ — P_i, and let lim& ank = 0, with anjt 2§ 1. Define ]8 = {&n} by 
the conditions bn=an for w v^nh, or for w=wjb, fe even, and bn = l/an 

with n=nj, k odd. Then j8 is of — P_i, dominates a, but is not in 
F n - P _ i . 

For the remaining members of System I, we demonstrate the prop
erty K2 between adjacent classes, from which it then follows in gen
eral. We consider the following cases: 

3.234. —Loo has the property K2 relative to — P_i, P, andF\J — P_i, 
and consequently all classes of System I. 

Suppose that a belongs to P and lim inf an > 0, that is, a is not in 
— P_i. Then define j3: bn—an for w even, bn = nan for w odd. Then /3 
is in —Leo, but not in P or — P_i. 

Suppose a belongs to — P_i. Let # ' be the set of integers for which 
a n ^ l . Divide the integers n' into two infinite subsets n", n'" so that 
limn// an>>=0. Then define bn=an for n 9^n\ bn~\lan for n = n" and 
bn = 1 for n~n'". Then /3 is of —Loo, but not in P nor — P_i. 

3.235. D'i* tos tóe i£2 property relative to — Lw. 
Let a be of —Loo, that is, lim inf a n=&o< °° and suppose that lim 

önfc = &Q. I t is obviously sufficient to assume ao>0. Suppose j30 is any 
element olD"» not belonging to —Loo, for example, wexp(l/(log w)1/2). 
Define j3= {&„} by the conditions bn—nan for w 7ew*, bn = b0kan for 
w = w*. Then /3 is in L>"«> but limn è n = 00. 
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3.236. All pairs of classes P , Q in the D group of System I have the 
K2 property relative to each other. 

We prove this by showing that the theorem holds for the following 
cases: (a) D-0, D-f with e<f, (b) P_i, DLi, and (c) D"l9 Z>_i, since ob
viously the case of any two pairs from the D group can be deduced 
from these three cases. 

(a) Suppose that a is of Z>_/, that is, ^ndn* = °°. Without loss of 
generality it is possible to assume that an è 1. Let a = {sn} = \^J[amf} 
and let j8=aX<r1/e. Then since j8~' = a r ' X ( r - / / e a n d f/e>l the Abel-
Dini Theorem assures us that /3 _ / is of G, that is, /3 belongs to C-/. 
On the other hand 

P~* = «-« x a~l ^ cc* X a"1 

since f>e, and an?zl. Now orfX<r~l is in Du that is, /3 is of D„e. 
Obviously j8 dominates a. 

(b) Suppose a is in DLi, that is, there exists an ƒ > 1, so that a is of 
D-f. Using the same notation as in (a), we now define j3= a Xo\ Then 
if g > l , j3 - '=a-*X(T- '<ur x X<r" ' is of G, that is, jS is in C-0 for all 
g> 1, and so in C'lx = —-DLi. On the other hand j3 is in D_i and domi
nates a. 

(c) Suppose a is in Z)_i. Using the same notation as in (a) with ƒ = 1 
and assuming a n ^ l , we set bn~ansn log2 sn, that is, /3=a:X0"Xlog2 o\ 
Then by an extension of the Abel-Dini Theorem,9 /3 is of C_i. On the 
other hand /3 is of £>_/, f o r / < 1 . For if f<g<l 

p-f * a~/ X <r"' X log"2/ (T è «-1 X er* X log-2/ <r ^ a""1 X <T* 

ultimately, since limn s
9

n~
f log~2/ sn = 00. 

The fact that F has the K2 property with respect to any class in 
System I (or System II) is trivial. 

With respect to the property Z2, we have: 
3.237. If P and Q are any two classes of System I, with P properly 

containing Q, and (P, Q) is neither (F, Fr\ — F-.i)nor( — F-i, Fr\-~F~i), 
then P and Q have the T£2 property relative to each other, that is, for every 
element a of — P , there exists an element j3ofP — Qy such that a ultimately 
dominates /3. 

This follows immediately from the preceding results by the dualiz
ing process. 

As a consequence of these results, we are able to state the following 
theorems : 

9 See T. H. Hildebrandt, Remarks on the Abel-Dini Theorem, Amer. Math. 
Monthly vol. 49 (1942) p. 443. 
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3.241. The relation (P-Q)XR*=PXR provided P , Q and R are 
classes of System I, excepting possibly (P, Q) = ( P U — P_i, — P_i) or 
( P U - P _ x , P). 

3.242. The relation ( P - 0 X - S = - < 2 X - S , with P properly con-
taining Q, holds f or all classes of System I, excepting possibly (P, Q) 
= (P, Fni-Fi) or ( - P _ i , P n - P _ i ) . 

For the exceptional cases we have : 
3.243. 77*e relation ( ( P U - P_i) - ( - P_i)) X P = ( P U - P-i) X P is 

not valid for any R of System I excepting 0 awd V. 
For if a belongs to ( P U — P_i) — ( — P_i), then 00 >lim sup an 

> l i m i n f a n > 0 . Consequently ( ( P U - P _ i ) - ( - P _ i ) ) X P = P . But 
from the final table of Part II it is obvious that ( P U - P _ i ) X P = P 
only for R = 0 and V. 

Applying 3.12 we have: 
3.244. The relation ( ( P - ( P H - P_i) X - 5 = - ( P H - P_i) X-Sis 

valid for no S excepting the classes 0 and V in System I. 
On the other hand we have: 
3.245. The relation ( ( P U - P_i) -F)XR = ( P U - P_i) X P holds for 

all R of System I excepting P. 
By Par t II , ( P U - P . ^ X P ^ - P - i , for any P between Co" and 

PP\ — P_i inclusive. On the other hand, the class ( P U — P_i) — P i s the 
class of sequences a such that lim sup an = <*> and lim inf an = 0. Let a 
be any element of — P_i and j80 any element of Co ' . Select the integers 
nh so that cnk<bok. Let bn — b0n for w ̂ w*, bn — (bok)112 for w=w& and 
fe even, bn=cn/k for & odd. Then for k odd anfc = cn/6„<(&ofc)1/2 which 
approaches zero with &, while for k even ank~k and bnk<bok/k. I t fol
lows that j8 is of Co" and a of ( P U - P_i) - P, so that ( ( P U - P_i) - P) 
X Co ' D — P-i. The same type of proof works for all classes R between 
and including Co' ' and PP\ — P_i. 

For R between and including — P_i and V we have ( P U — P_i) X P 
= V. I t is consequently sufficient to prove that ( ( P U — P_i) — P) 
X ( ~ f - i ) D K Let 7 be any element of F and suppose in the first 
place that lim sup cn = 00, that is, there exists a subsequence such 
that lim* £njfc= °°. For w T^W*, take an and &n arbitrary with anUn ~~ Cn. 

For n~nk and & even, take an = 4> so that &n = l /c n . For w=w& and 
& odd, take an = 1 An, &n = 4- Then both a and /3 are of ( P U — P_i) — P 
and so also of — P_i. Suppose next that 00 >lim sup c n >0 , so that 
there exists a sequence cnk such that lim* cnA. = cQ>0. Take an and bn 

arbitrary for n j^n*, with anbn =cn. For n=nk, k even, take a» = &cw, so 
that 6n = 1/&, and for n = nk,k odd, take an=cn/kf so that &« =&. Then 
a and /3 have the desired properties. Finally if lim cn~0, a disposi-
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tion similar to the first case will work. 
For R = F we have ((FKJ - F^) - F)XF = (F\J - #_i) - F but 

(FU-F-i) XF^FKJ-F-x. This completes the proof of the theorem. 
As a corollary we have : 

3.246. The relation ((-F-i)-(Fr\-F-i))X-S = (-F-i)X-S 
holds for all S of System I excepting — F~i. 

3.3. Decomposition theorems. I t will be useful later to have certain 
results on the decomposition of sequences of a class into mutually ex
clusive subsequences belonging to the class. We have: 

3.31. THEOREM. If a is any element of a class P of System I {or 
System II) then there exist two complementary infinite subsequences of a: 
ot!'= {an>} and a"' = {an"} so that each subsequence belongs to P . 

For the classes which are characterized by a convergence property, 
this theorem is obvious, since every subsequence of any element of 
such a class has the same convergence property. The same is true of 
the class Lo and F. For an element a of FC\ — F-i, we select a subse
quence {ank\ such that lim* ank = 0} decompose it into two sequences 
having the same property and include the remaining elements of the 
original sequence in either of these subsequences. The same procedure 
is obviously applicable to — F_i, and consequently to F\J — F~i. For 
an element a of —Loo» we use a similar procedure, excepting that in 
this case, we utilize a subsequence ank such that lim^ #n;fc = Ö 0 < <*>. For 
the classes of divergent character, D_„ and DL0, the following proced
ure is effective. Select a subsequence nk such that 

E «r > i. 

Take n~n' if nk-i^n<nki k even, and n = n" for k odd. For the 
classes D'ie we modify this procedure slightly. Let//t approach e mono-
tonely decreasing, and select nk by the condition 

E <*:'* > i. 
«*- l^n<n* 

Then the same decomposition as in the preceding case will give two 
subsequences each in D"e. 

For System II the result follows from the one-to-one correspond
ence between sequences a and or1. 

For products of classes we have a similar result, namely: 

3.32. THEOREM. If P and Q are any two classes chosen either from 



1946] CLASSES OF SEQUENCES OF POSITIVE NUMBERS 217 

System I or II , and a belongs to P H Q , then there exist complementary 
subsequences {an>} and {an>'} of a each of which belongs to PC\Q. 

The proof of this theorem depends upon the following lemma valid 
for all classes or properties of System I and System I I : 

3.33. LEMMA. If a0 is any sequence having the property P and ai is a 
subsequence of a sequence having the property P then any combination 
of ao and a\ into a single sequence has property P . 

Obviously this includes the case when the sequence a\ has the prop
erty P . 

We return to the proof of 3.32. Let a belong to P H Q . Then there 
exist a ' = {an>} and a " ~ {a n "} , complementary subsequences of a 
each belonging to P . By 3.33 one of these sequences must belong to Q. 
Suppose it is the first. Then this can be divided into two subsequences 
a'" = {#»'"} and aiv= {an

iv} both of which belong to Q and one of 
which belongs to P . Let it be the first. Then a'" and the rearrange
ment of \an"\ {an

iv} in proper order gives by 3.33 two complemen
tary subsequences each belonging to both P and Q. For a" is of P 
and a i v is a subsequence of a sequence of P , while a i v is of Q and a!' 
is a subsequence of a sequence of Q. As a corollary we have : 

3.34. If P and Q are classes of System I, such that P properly contains 
Q, then any sequence of P~-Q can be divided into two complementary 
subsequences both of which belong to P — Q. 

We finally make the following two observations: 
3.35. The classes P of the System la with the exception of PP\ —P_i 

have the property : If ais of P then every subsequence of a has the prop
erty P . 

This holds also for the classes of System l ia , excepting F-iCS — P. 
3.36. The classes P of the System lb with the exception of A J —P_i 

have the property : If af is a subsequence of a sequence of P , which has 
the property P , then the sequence /3 obtained by altering in any way the 
elements of a complementary to a' will have property P . 

3.4. The multiplication theorem. We are now in position to prove 
the following theorem. 

3.41. MULTIPLICATION THEOREM. If P , Q, R and S are of System I, 
neither P nor R is FKJ — P_i, and Q nor S is P H — P_x, P properly 
contains Q, and R properly contains 5, then (P — Q) X (2? — S) = (PXR) 

n(-Qx-s). 
As we have already noted that (P - Q) X (R - S) C (P X R) 
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^ ( ~ - Q X — 5 ) , only the inverse inclusion needs to be shown. Since 
neither P nor P are P U — P_i and Q nor S are FC\ — P_i, the applica
tion of Theorems 3.241 and 3.242 yields 

P X R = (P - Q) X R = P X (R - S), 

-QX-S=(P-Q)X-S=-QX(R~S). 

If then 7 is a member of ( P X - R ) H ( - Q X —5), it also belongs to the 
four classes (P-Q)XR, ( P - Q ) X - S , P X C R - S ) , - Q X ( P - S ) , 
that is, we can write 

7 « «i X ft = a2 X 02 = «3 X 03 « a4 X 04 

where CL\ and a2 are of P — Q, as is of P , a* is of — Ç, 0i is of P , 02 is 
of — S, and 03 and 04 are of P —£. Obviously the theorem is proved 
unless 0i is of 5, 02 is of — P , a3 is of Q and «4 is of —P. We shall con
sequently make these assumptions. We break up the proof into cases. 

Case I. P and R are both of System lb with P U — P_i omitted. We 
assume then 

7 = «2 X 02 with «2 of P - Q, 02 of - P , 

7 = a4 X 04 with a4 of - P , 04 of R - S. 

By 3.34, the sequence CL<L can be divided into two subsequences, a{ 
and c^', such that both are in P — (X Consider the corresponding 
sequences 04' and 04". Since 04 is of P , by 3.33, not both 04' and 04" 
can be of — P , and since 04 is of — S not both 04' and 04" can be of S. 
By considering all possibilities it develops that we have either 04' or 
04 ' is of P — 5, or one is of —R and the other of 5. 

Suppose then that 04' is of R — S. Then we define a = (a4', 0:2"), 
0 = (04', 02") arranged in proper order. Then since a" is of P — Q, and 
P is in lb, and not PVJ — P_i, a is of P by 3.36. Since a2" is of — Q, 
and al is a subsequence of «4 which is of — P and so of —Q, a is of 
— Q by 3.33. A repetition of this reasoning shows that 0 is of P — S. 

In case one of the 04', 04;' is of — P and the other of S suppose that 
04; is of —P. Then, by 3.237 there exists a sequence 0O' ^04' of R — S, 
if P is in the X2 relation to 5, which is true since 5 is not the class 
P H - P _ i . Define a = (p4 X04' X0o'~\ a£') and 0 = (0o', ft'). Then 0 
is of P — S as above. Further a is of P as above. On the other hand 
tt'èok', and consequently is a subsequence of a sequence having the 
property — P and so of — Q. Hence a is of — Q. 

Case II . P is in la, P iw lb with FU — P_i omitted. Then take 

7 = «2 X 02 with <x2 of P - Q, 02 of - P, 

7 = OLZ X 03 with az of Q, 03 of P - 5. 
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Proceed as in Case I, that is, break up a2 = (a2'» <*") e a ° h ol P — Q 
and assume in the first place that /33' is of R — S. Then define 
a = (al ,<x") and /3 = (183, j82

// ). Then a is of P since «2" has property P 
and «3' is a subsequence of a sequence of P . a^' is of — (X Then any 
sequence added to a" will give a sequence which is still in — Q, if 
Q is in la and not FC\ — P_i. Then a is of — Q. The proof that 8 is 
of R — 5 is the same as in Case I above. 

If one of the pair /33', fi" is of —2? and the other of S, we assume ft' 
of 5. Then there exists a /30' e f t ' oi R — S, since P has the if2 property 
relative to 5, when 2? is not FU-F-i. Let a=*(at' Xft' X/3o~"\ a " ) . 
0 = 030, ft"). Obviously j8 is of 2 2 - 5 . On the other hand since 
a/ = a / Xj33' Xj8o~x g a s , and ai is of Q, it follows that a is of P . Fur
ther a is of — Ö as above. 

Case I I I . P is iw lb with FU — F-x omitted, R in la. This follows 
by parity from Case II . 

Case IV. P is in la, R in la . This can be deduced from Case I by 
the dualization process. We can also proceed directly. We take 

7 * « i X f t with «! of P - Q, fix of S, 

7 = «3 X ft with a3 of Q, /3S of R - 5, 

and follow Case II . 
This concludes the proof of the theorem. We might point out that 

the reasoning in Case II still applies if P is any class in System I, 
Q is in la with P H - P - i omitted, R in lb with P U - P _ i omitted, 
and S any class in I ; while Case IV applies if P and R are in System I, 
Q and 5 are in System la with FC\ — P_i omitted, and R has the K2 

relation to S. By a careful analysis of the sufficient conditions in
volved, it is possible to extend the multiplication theorem to cases in 
which P or R are the class FU — P_i, and Q or S the class FC\ — F-v 
A complete analysis requires the use of the Table of Part II and is 
rather tedious. We therefore conclude with a combination of classes 
where the multiplication theorem is not valid, namely: 

3.42. THEOREM. If P is the class PVJ — F-h and Q is the class — F-h 

then for no R properly containing S is (P-Q)X(R~S) = ( P X P ) 
r\( — QX —S); and dually the equality does not hold if Q is the class 
P H — F-i and P the class P, R and S any. 

This follows a t once from a reference to the table of Part II . 


