A NOTE ON AXIOMATIC CHARACTERIZATION OF FIELDS

E. ARTIN AND G. WHAPLES

Since publication of our paper, Axiomatic characterization of fields by the product formula for valuations,¹ we have found that the fields of class field theory can be characterized by somewhat weaker axioms; we can drop the assumption, in Axiom 1, that $|\alpha|_{\mathfrak{p}}=1$ for all but a finite number of \mathfrak{p} , replacing it by the assumption that the product of all valuations converges absolutely to the limit 1 for all α .

Our original proof can be adapted to the new axiom with a few modifications, which we shall describe here. In §2, we keep Axiom 1 for reference and introduce:

AXIOM 1*. There is a set \mathfrak{M} of prime divisors \mathfrak{p} and a fixed set of valuations $| \mathfrak{p}, one for each \mathfrak{p} \in \mathfrak{M}$, such that, for every $\alpha \neq 0$ of k, the product $\prod_{\mathfrak{p}} |\alpha|_{\mathfrak{p}}$ converges absolutely to the limit 1. (That is, the series $\sum_{\mathfrak{p}} \log |\alpha|_{\mathfrak{p}}$ converges absolutely to 0.)

We must then omit the statement that there are only a finite number of archimedean primes, since this does not follow immediately from 1*; instead of it, we use the fact that $\sum_{\mathfrak{p}_{\infty}} \rho(\mathfrak{p}_{\infty})$ and $\sum_{\mathfrak{p}_{\infty}} \lambda(\mathfrak{p}_{\infty})$ converge absolutely. These quantities are defined on p. 480; the convergence follows from the fact that the product over all \mathfrak{p}_{∞} of $|1+1|_{\mathfrak{p}_{\infty}}$ must converge absolutely. Also, we must temporarily broaden the definition of "parallelotope" so as to permit a parallelotope to be defined by any valuation vector \mathfrak{a} for which $\prod_{\mathfrak{p}} |\mathfrak{a}|_{\mathfrak{p}}$ converges absolutely (rather than restricting \mathfrak{a} to be an idèle). In the statement of Axiom 2 we must replace "Axiom 1" by "Axiom 1*," Theorem 2, however, is left unchanged, together with Lemmas 4, 5, and 6, which are needed only to prove it; this theorem shows that the fields of class field theory really satisfy Axiom 1, so that at the end of the whole proof we shall find that Axiom 1 is a consequence of Axioms 1* and 2.

In §3, k is assumed to be any field for which Axioms 1* and 2 hold. Lemma 8 holds under assumption of Axiom 1*, for our slightly more general parallelotopes; in its proof we have only to note, in case of archimedean primes, that the product $\prod_{p_{\infty}} 4^{\rho(p_{\infty})}$ converges absolutely. In Lemma 9, property 2 must be replaced by:

2*. $|\alpha|_{\mathfrak{p}_{\infty}} \leq B_{\mathfrak{p}_{\infty}} |y|_{\mathfrak{p}_{\infty}}$, with a set of constants $B_{\mathfrak{p}_{\infty}}$ for which $\prod_{\mathfrak{p}_{\infty}} B_{\mathfrak{p}_{\infty}}$ converges absolutely.

Received by the editors December 9, 1945.

¹ Bull. Amer. Math. Soc. vol. 51 (1945) pp. 469-492.

To prove existence of these constants, let, at each \mathfrak{p}_{∞} , $M_{\mathfrak{p}_{\infty}}$ be the maximum of $|\alpha_i|_{\mathfrak{p}_{\infty}}$ for $i=1 \cdots l$; then $\prod_{\mathfrak{p}_{\infty}} M_{\mathfrak{p}_{\infty}}$ converges to a finite limit. Take $B_{\mathfrak{p}_{\infty}} = M_{\mathfrak{p}_{\infty}} l^{\lambda(\mathfrak{p}_{\infty})}$; since $\sum_{\mathfrak{p}_{\infty}} \lambda(\mathfrak{p}_{\infty})$ was absolutely convergent, our conclusion follows.

Lemma 10 holds as stated, although the set of \mathfrak{p}_{∞} is not now known to be finite. But as soon as we have proved that *n* is finite, it follows from Theorem 2 that our original Axiom 1 holds, so no further changes are necessary. (The theorems about parallelotopes in §4 hold only for parallelotopes defined by ideal elements.)

It is easy to construct an example of a field which satisfies Axiom 1* but does not satisfy Axiom 1 (nor, of course, Axiom 2). Let k = R(x, z)be the set of all rational functions of x and z over the rational field. Let $k_0 = R(x)$, consider k as the set $k_0(z)$ of all rational functions of zwith k_0 as constant field, and denote by \mathfrak{M}_0 the set of all divisors which are trivial on k_0 . We construct \mathfrak{M}_0 , and define the set of normed valuations, exactly as in the proof of Lemma 6 of our original paper (pp. 477-479). Let $V_0(A) = \prod ||A||_{p_0}$ where the product is taken over all $p_0 \in \mathfrak{M}_0$; by Lemma 6, $V_0(A) = 1$ for all $A \in k$.

Now let $x_1=x+z$, $x_2=x+2z$, \cdots , $x_i=x+iz$, \cdots ; let $k_i=R(x_i)$ and for each *i* construct the sets \mathfrak{M}_i of divisors p_i by repeating exactly the above process with k_0 replaced by k_i . The products $V_i(A)$ are all equal to 1. These sets \mathfrak{M}_i are by no means disjoint; for example one can easily see that the irreducible polynomial *z* defines the same valuation in each \mathfrak{M}_i . However, it is unnecessary to explore these duplications in detail; we shall need only the facts that the valuations $p_{i\infty}$ and $p_{j\infty}$ are inequivalent for $i \neq j$, and are not equivalent to any of the finite p_r . Namely, $x_i=x+iz=x_i+(i-j)z$ has value 1 at $p_{i\infty}$, but value q > 1 at all $p_{j\infty}$ with $j \neq i$. And *z* has value q > 1 at all $p_{i\infty}$,

To construct our example, let ϵ_r ($\nu = 0, 1, 2, \cdots$) be an infinite sequence of positive numbers whose sum is finite. Form the product

$\prod \|A\|_{p_i}^{\epsilon_i}$

over all $p_i \in \mathfrak{M}_i$, all *i*, and in this product unite each set of equivalent valuations into a single valuation. The exponents insure the convergence of the infinite products involved in this step. To show that the whole product is absolutely convergent for each $A \in k$, write A in the form A = g(x, z)/h(x, z) where g and h are polynomials with rational coefficients. If N and M are the maximum degrees in x and z, respectively, for both numerator and denominator, then A can be written in the form $g_i(z)/h_i(z)$, where numerator and denominator are poly-

246

1946] AXIOMATIC CHARACTERIZATION OF FIELDS

nomials in z with coefficients in k_i , and are of degree at most N+M in z. It follows from this that, for fixed A, the number of factors of $V_i(A)$ which are greater than 1 (or which are less than 1) is bounded, and their size is bounded; and this bound is uniform for all *i*. Hence the exponents ϵ_i insure absolute convergence. Finally, we note that our product, applied to z, contains an infinity of factors different from 1.

Taking the product over sets \mathfrak{M}_0 and \mathfrak{M}_1 only gives an example in which Axiom 1 is satisfied but Axiom 2 is not; for the field of constants with respect to $\mathfrak{M}_0 \cup \mathfrak{M}_1$ is the rational field $k_0 \cap k_1$.

To get an example of a field possessing a valuation satisfying Axiom 2, but such that this valuation cannot be contained in any set \mathfrak{M} satisfying Axiom 1, take the *p*-adic closure of either the rational field or any of the fields $k_0(z)$ of our original paper, with *p* any of the divisors of Lemma 6. Because of Theorem 3, such an \mathfrak{M} cannot exist.

Indiana University and University of Pennsylvania