A NOTE ON AXIOMATIC CHARACTERIZATION OF FIELDS

E. ARTIN AND G. WHAPLES

Since publication of our paper, Axiomatic characterization of fields by the product formula for valuations, ${ }^{1}$ we have found that the fields of class field theory can be characterized by somewhat weaker axioms; we can drop the assumption, in Axiom 1, that $|\alpha|_{p}=1$ for all but a finite number of \mathfrak{p}, replacing it by the assumption that the product of all valuations converges absolutely to the limit 1 for all α.

Our original proof can be adapted to the new axiom with a few modifications, which we shall describe here. In §2, we keep Axiom 1 for reference and introduce:

Axıом 1*. There is a set \mathfrak{M} of prime divisors \mathfrak{p} and a fixed set of valuations $\left.\right|_{p}$, one for each $p \in \mathbb{M}$, such that, for every $\alpha \neq 0$ of k, the product $\Pi_{p}|\alpha|_{p}$ converges absolutely to the limit 1 . (That is, the series $\sum_{p} \log |\alpha|_{p}$ converges absolutely to 0 .)

We must then omit the statement that there are only a finite number of archimedean primes, since this does not follow immediately from 1^{*}; instead of it, we use the fact that $\sum_{p_{\infty}} \rho\left(\mathfrak{p}_{\infty}\right)$ and $\sum_{p_{\infty}} \lambda\left(p_{\infty}\right)$ converge absolutely. These quantities are defined on p. 480; the convergence follows from the fact that the product over all p_{∞} of $|1+1|_{p_{\infty}}$ must converge absolutely. Also, we must temporarily broaden the definition of "parallelotope" so as to permit a parallelotope to be defined by any valuation vector a for which $\Pi_{p}|\mathfrak{a}|_{\mathfrak{p}}$ converges absolutely (rather than restricting \mathfrak{a} to be an idèle). In the statement of Axiom 2 we must replace "Axiom 1" by "Axiom 1*," Theorem 2, however, is left unchanged, together with Lemmas 4,5 , and 6 , which are needed only to prove it; this theorem shows that the fields of class field theory really satisfy Axiom 1, so that at the end of the whole proof we shall find that Axiom 1 is a consequence of Axioms 1^{*} and 2.

In $\S 3, k$ is assumed to be any field for which Axioms 1^{*} and 2 hold. Lemma 8 holds under assumption of Axiom 1*, for our slightly more general parallelotopes; in its proof we have only to note, in case of archimedean primes, that the product $\prod_{p_{\infty}} 4^{\rho\left(p_{\infty}\right)}$ converges absolutely. In Lemma 9, property 2 must be replaced by:

2*. $|\alpha|_{p_{\infty}} \leqq B_{\mathfrak{p}_{\infty}}|y|_{p_{\infty}}$ with a set of constants $B_{\mathfrak{p}_{\infty}}$ for which $\prod_{p_{\infty}} B_{p_{\infty}}$ converges absolutely.

[^0]To prove existence of these constants, let, at each $\mathfrak{p}_{\infty}, M_{p_{\infty}}$ be the maximum of $\left|\alpha_{i}\right|_{p_{\infty}}$ for $i=1 \cdots l$; then $\prod_{p_{\infty}} M_{p_{\infty}}$ converges to a finite limit. Take $B_{p_{\infty}}=M_{p_{\infty}} l^{\lambda\left(p_{\infty}\right)}$; since $\sum_{p_{\infty}} \lambda\left(p_{\infty}\right)$ was absolutely convergent, our conclusion follows.

Lemma 10 holds as stated, although the set of p_{∞} is not now known to be finite. But as soon as we have proved that n is finite, it follows from Theorem 2 that our original Axiom 1 holds, so no further changes are necessary. (The theorems about parallelotopes in $\S 4$ hold only for parallelotopes defined by ideal elements.)

It is easy to construct an example of a field which satisfies Axiom 1* but does not satisfy Axiom 1 (nor, of course, Axiom 2). Let $k=R(x, z)$ be the set of all rational functions of x and z over the rational field. Let $k_{0}=R(x)$, consider k as the set $k_{0}(z)$ of all rational functions of z with k_{0} as constant field, and denote by \mathfrak{M}_{0} the set of all divisors which are trivial on k_{0}. We construct M_{0}, and define the set of normed valuations, exactly as in the proof of Lemma 6 of our original paper (pp. 477-479). Let $V_{0}(A)=\Pi\|A\|_{p_{0}}$ where the product is taken over all $p_{0} \in \mathfrak{M}_{0}$; by Lemma $6, V_{0}(A)=1$ for all $A \in k$.

Now let $x_{1}=x+z, x_{2}=x+2 z, \cdots, x_{i}=x+i z, \cdots$; let $k_{i}=R\left(x_{i}\right)$ and for each i construct the sets M_{i} of divisors p_{i} by repeating exactly the above process with k_{0} replaced by k_{i}. The products $V_{i}(A)$ are all equal to 1 . These sets \mathfrak{M}_{i} are by no means disjoint; for example one can easily see that the irreducible polynomial z defines the same valuation in each \mathfrak{M}_{i}. However, it is unnecessary to explore these duplications in detail; we shall need only the facts that the valuations $p_{i \infty}$ and $p_{j_{\infty}}$ are inequivalent for $i \neq j$, and are not equivalent to any of the finite p_{ν}. Namely, $x_{i}=x+i z=x_{i}+(i-j) z$ has value 1 at $p_{i \infty}$, but value $q>1$ at all $p_{j \infty}$ with $j \neq i$. And z has value $q>1$ at all $p_{i \infty}$, but has value $\leqq 1$ at all finite p_{r}.

To construct our example, let $\epsilon_{\nu}(\nu=0,1,2, \cdots)$ be an infinite sequence of positive numbers whose sum is finite. Form the product

$\Pi\|A\| \|_{b i}^{0}$

over all $p_{i} \in \mathbb{M}_{i}$, all i, and in this product unite each set of equivalent valuations into a single valuation. The exponents insure the convergence of the infinite products involved in this step. To show that the whole product is absolutely convergent for each $A \in k$, write A in the form $A=g(x, z) / h(x, z)$ where g and h are polynomials with rational coefficients. If N and M are the maximum degrees in x and z, respectively, for both numerator and denominator, then A can be written in the form $g_{i}(z) / h_{i}(z)$, where numerator and denominator are poly-
nomials in z with coefficients in k_{i}, and are of degree at most $N+M$ in z. It follows from this that, for fixed A, the number of factors of $V_{i}(A)$ which are greater than 1 (or which are less than 1) is bounded, and their size is bounded; and this bound is uniform for all i. Hence the exponents ϵ_{i} insure absolute convergence. Finally, we note that our product, applied to z, contains an infinity of factors different from 1.

Taking the product over sets \mathfrak{M}_{0} and \mathfrak{M}_{1} only gives an example in which Axiom 1 is satisfied but Axiom 2 is not; for the field of constants with respect to $\mathfrak{M}_{0} \cup M_{1}$ is the rational field $k_{0} \cap k_{1}$.

To get an example of a field possessing a valuation satisfying Axiom 2 , but such that this valuation cannot be contained in any set \mathfrak{M} satisfying Axiom 1, take the p-adic closure of either the rational field or any of the fields $k_{0}(z)$ of our original paper, with p any of the divisors of Lemma 6. Because of Theorem 3, such an \mathfrak{M} cannot exist.

Indiana University and

University of Pennsylvania

[^0]: Received by the editors December 9, 1945.
 ${ }^{1}$ Bull. Amer. Math. Soc. vol. 51 (1945) pp. 469-492.

