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We are concerned with the following three properties which may be 
possessed by an increasing sequence {X»} of positive integers. 

(A) If {an} is a sequence of complex numbers such that, for some 0, 
Cn^Oint) and A^ao^O (w»l, 2, • • • ), an is a polynomial in n\ here 

n 

(B) The set {/*»e~c<} is complete L2(0, oo); that is, 

/
faftyfydt =* 0 (n » 1, 2, • • • ; * G £2) 

o 
implies <f>(t) *0 almost everywhere.1 

(C) If ƒ($) is regular and 0(|s|") for some a in the half-plane 
* > - € , 6>0, and /<x»>(0)=0 (w = l, 2, • • • ), f(z) is a polynomial.2 

W, H. J. Fuchs [3]8 showed that (A) and (B) are equivalent. We 
shall give a somewhat simpler proof, and show in addition that (C) 
is equivalent to (A) and (B). 

Fuchs showed that (A) is true if n(r) êr/2—7 for some constant yt 

where n(r) is the number of X« £r. R. P. Agnew discovered independ
ently [l ] that (A) is true if Xn » In ; a simplified proof given by Pollard 
[5] was the starting point of this note. Boas [2] has shown by other 
methods that it is enough to have n(r) èr/2—rô(r)t where J™r~l&{r)dr 
converges and S(r) satisfies some mild auxiliary conditions. (Fuchs, 
in a paper [3a] which appeared while this note was in the press, has 
shown that a necessary and sufficient condition for (A) is that 
$™r~mf)ir diverges, where log ^(r) ^^XnsX""1 . ) 

Let P(Xn) mean that {Xn} has property (P); P(Xn—iV)» that the se
quence {Xn—N] has (P), where Xn —iVis replaced by 0 if \n<N. Our 
line of reasoning is schematically as follows: A (Xn)->--B(Xn)->-C(Xn+N) 
+Afrn+N)+Afrn-ty+Bfrn~N)+C(K)+A(kn). It would be 
more direct to use B(Xw)->-J5(Xn—N); this can be quoted from the 

Received by the editors December 17, 1945. 
1 Replacing ct by t, we see that (B) is independent of c. 
8 (C) thus concerns the analytic continuation of a function defined by a lacunary 

power series X)cns
M», where {nn} is the sequence of positive integers complementary 

to {Xn}. 
8 Numbers in brackets refer to the references at the end of the paper. 
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work of Fuchs, but the proof is rather involved, and we know of no 
really simple direct proof. One implication of our reasoning is that 
uB(Kn)-*-BÇkn~-N)" is actually equivalent to our other results, and 
not merely a convenient lemma. Carrying out the indicated scheme 
actually involves only four nontrivial steps* 

(1) A (Kn)->-A Çkn—N). It is sufficient to prove this when N**l. Sup
pose that {Xn — 1} does not have (A) ; we then have a nonpolynomial 
sequence |an}n-o» an=*0{nt)y A ^ ^ o - O if Xi>0, ao-O if Xi = 0. 
Consider the sequence {Jn}*-o> where Jo = 0, &n = —22*-o^* f<>r 

w = l, 2, • • • . Then <*»«*&,» —&«+i, and for p>0, by a simple direct 
computation, Apa0—Ap+1bo. Consequently A^&o^A^^ao^O if Xn>0, 
A^o^&o^O; furthermore, if {bn} were a polynomial sequence, {a«} 
would be one also; and 6n = 0(«^+1). Hence {Xn} cannot have (A) if 
{Xn — l} does not. 

(2) A->-B. Suppose that <l>(t)£L2 and 

ƒ' 
•J o 

e-*i*fi»4>(t)dt « 0, n - 1, 2, 

We have to show that ${t) = 0 almost everywhere if (A) is true. We 
define bn by 

then 

nlbn = f er«/*/*0(*)<tt; 
Jo 

J 0 U - 0 / 
( I ) 

» j e~«*Ln(t)<t>(t)dtt 
Jo 

where Ln(0 is the wth Laguerre polynomial. Thus 

i «. i1 i | ƒ Vz i»*} | ƒ * i «(/) f rf/| « ƒ °° i «(o r̂ , 
and so an=»0(l). Since, as is readily verified, &«=Ana0, (A) implies 
that {an} is a polynomial sequence, which must be constant since 
{an} is bounded. Hence an~ao for w» l , 2, • • • . Since e~~t,2Ln(t) is 
orthonormal, £/&w

2 converges, by (I). But this is possible only if all 
the an vanish. Hence bn-0, w = 0, 1, • • • . But then <f>(t) = 0 almost 
everywhere, since B(n-~1) is true.4 

(3) J3(Xn)->-C(X„+.A0, N%a+1. Suppose that ƒ(z) satisfies the hy-
4 This is equivalent to the completeness of the set {e~lLn(t)} ; see [6, p. 104]. 
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potheses of (C), with Xn+i\T; we have to show that ƒ(z) is a polyno
mial if (B) is true for {Xn}. For convenience, suppose e = 2. If P(z) 
is the sum of the terms through zN in the Maclaurin series of ƒ(s), 
z~N~l{f(z)-*P(z)} belongs to the class üf2( — 1) of functions g(z) such 
that g(x+iy)ÇzL*t qua function of y% uniformly in x*z — 1, and con
sequently [4, p. 8] 

ƒ00 » P(«) + zN f e-xe-tytydt, 4> G L\ * > - 1. 
Jo 

Since/<x»+*>(0)»0, 

frerWQdt =» 0, X„ è ff. ƒ' 
Since (B) is assumed for {Xn}, 0(0 ==0 almost everywhere and so 

(4) C-»v4. Let an — 0(nP), A ^ o — O; we may assume that j8 is an 
integer. Define 6n=Ana0, so that 6n«0(»^2n), &\n = 0. Consider 

f(z) « E to" - 2 > Z (- l)*Cn,*a* 
n—0 n—0 &—0 

- è (-i)*«»è c',,.»*» 
fc«-0 n-»fc 

The first series iorf(z) converges for | z\ < 1/2 ; the last, for | z/(l —z) \ 
< 1, that is, for x < 1/2. Consequently ƒ (z) is regular in this half-plane. 
There is a numberKsuch that \an\ £*Kn(n — l) • • • (»—j3+l), w^jS. 
We then have 

I 1 — 0 »-0 \1 — «/ I h-fi (* - P) 11 1 - Z I 

sow+rrnrh— ( 1 - h—) -°< «fo 
I 1 — *| I 1 — «l \ 11—2 1/ 

in # < l / 2 —e, 6>0. Since (C) is assumed, f(—z) is a polynomial. 
Hence all bn vanish from some n0 on, and 

no 

an « A»J0 - £ ( - 1)*M(» - 1) • • • ( » - A + 1)/*!, 

a polynomial in #, 
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