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Often in the history of physics a guiding line of mathematical 
thought has permeated the whole of the science for years, tying to
gether apparently unrelated branches of the subject, contributing to 
the unity of physics, but at the same time stimulating philosophical 
thought, and focussing attention on a branch of mathematics, and 
leading to its development. The Newtonian mechanics was such a 
guiding principle. From Kepler through Newton and up into the 
nineteenth century, more and more of physics was explicable in me
chanical form. Even philosophy and economics and history felt the 
impact of rationalism. Mathematics felt the tide; calculus and the 
theory of ordinary differential equations grew up under the impetus 
of the physicist, who needed the mathematical methods to explain 
his physical facts. A second guiding principle was the variation prin
ciple. D'Alembert, Lagrange, Hamilton expressed the laws of me
chanics in variational form. As time went on, more and more branches 
of physics could be formulated in similar language. We had not merely 
the principle of least action in mechanics, but Fermat's principle in 
optics, and variational formulations of electromagnetic theory. Here 
again there were impacts on both philosophy and mathematics. The 
philosophers grasped at the principle of least action as a proof of the 
existence of the deity, who used the simplest and most effective means 
to accomplish his purposes. The mathematicians were led to the de
velopment of the calculus of variations, and to such related fields as 
the theory of continuous groups and of contact transformations. Sev
eral similar developments have come since that time; two conspicuous 
ones are statistics, as seen in statistical mechanics, in the philosophi
cal ideas associated with the second law of thermodynamics, and in 
the mathematical development of the theory of statistics; and rela
tivity, with its obvious philosophical accompaniments, and its rela
tion to the theories of the absolute differential calculus and tensor 
analysis. In all of these cases, I believe one could make out a case 
for the thesis that each succeeding line of thought in physics enriched 
and supplemented, but never supplanted, those which had gone be
fore; that the philosophical applications were in general superficial 
and ephemeral, the embodiment not of fundamental truth but of the 
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prejudices of the men of the time; and that the impact on mathemat
ics stimulated some of the most vital and valuable developments of 
that science. 

I should like this evening to call to your attention the guiding prin
ciple which, more than any other, is running through the theoretical 
physics of the present, and to suggest that, though the mathemati
cians are well aware of it, they could nevertheless profit by following 
it even more closely. This is the wave equation. I shall not try to 
draw any philosophical implications from the fact that more and more 
parts of physics are now being explained in terms of the wave equa
tion. I do not believe it has any philosophical implications at all. We 
are merely in that stage of the great development of physical thought 
in which we are exploring and exploiting the wave equation and its 
uses, as we have in the past explored and exploited Newtonian me
chanics, the variational principle, statistics, tensor analysis, and 
many other lines. I t will fit into a continually developing mosaic, 
enriching it and making it more powerful. We should be as wrong to 
base our philosophy on the principle of uncertainty and the wave 
mechanics as our ancestors were in basing theirs on Newtonian deter
minism; each is only a partial phase of the broader physical theory 
which is gradually unfolding itself. But mathematics may well be 
stimulated by studying the efforts of physicists to handle problems 
in the wave equation which are beyond the range of our present math
ematical techniques, but not beyond the problems whose solution is 
not only useful but pressing. 

The present importance of the wave equation is the culmination 
of a century and a half of continually increasing emphasis on partial 
differential equations. Laplace, Poisson, Fourier, Bernoulli, and many 
others, discovered the extraordinary similarity of the mathematical 
theory underlying the propagation of waves in strings and mem
branes and fluids and solids, the flow of heat and electricity and 
fluids, and the behavior of the gravitational and electrostatic poten
tials. These problems all have a mathematical framework in common. 
In each one there is a single dependent variable, the displacement or 
velocity, the temperature, the potential, and so on, and four inde
pendent variables, the three coordinates of space, and the one of time. 
The formulation of their fundamental laws in terms of differential 
equations leads us then at once to partial differential equations, rela
tions between the derivatives of the dependent variable, which for 
the sake of illustration we may call u, with respect to the four inde
pendent variables x, y, z, and t. The remarkable feature of the prob
lem is not this mathematical framework, but the fact that in every 
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one of them the dependence on x, y, and z comes through the La-
placian expression 

d2u d2u d2u 

dx2 dy2 dz2 

which we may write as V2w, using the notation of Gibbs, in whose 
honor we are meeting this evening, and who more than any other 
clarified the relations between these branches of physics and vector 
analysis. The Laplacian appears in different ways in different prob
lems. The form which we are particularly interested in tonight is the 
wave equation 

1 d2u 

in which v is a constant, which proves to be the velocity of propaga
tion of the wave. But we have as well Laplace's equation, V2w = 0, 
Poisson's equation, V2u =ƒ(#, y, z), where ƒ is a function of x, y, z, and 
the heat flow or diffusion equation, V2u ~adu/dt, where a is a constant. 
These can be handled, as far as their time variation is concerned, in 
a common manner: we assume that u varies with time according to 
the exponential function cipt, so that u —w(x, y, z)eipK Thus the wave 
equation becomes V2w+(p2/v2)w~0, Laplace's equation is V2w = 0, 
Poisson's equation is V2w =ƒ, and the heat flow equation is V2w—aipw. 
All of these can be considered as special cases of the general equation 

V2w + k2w = f(x, y, z) 

which we may call the inhomogeneous wave equation. By setting 
& = 0, or ƒ=«(), we can obtain our various special cases. 

We have here a partial differential equation for a function w(x, y, z), 
whose solution is one of the classical problems of mathematical 
physics. Two broad approaches to its solution have been made, the 
method of expansion in orthogonal functions, and of Green's func
tions. Both are based first on a consideration of the related homo
geneous equation V2w+k2w*=0. It is perfectly simple to obtain 
solutions, in fact an indefinitely large assortment of solutions, of this 
equation. The trick is to find solutions satisfying certain desired 
boundary conditions. If we desire solutions of the equation, for in
stance within a closed volume, satisfying the condition that w~0 
over the surface of the volume, then we can show, if k2 is positive, 
that solutions are possible only for certain discrete values of k, the 
characteristic values or proper values or eigenvalues, which we may 
denote by a subscript, as kn ; the corresponding functions wn, the char-
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acteristic functions or proper functions or eigenfunctions, may then 
easily be shown to possess a property of orthogonality, 

I WnWmdv = 0 it n 7* m 

where the integral is extended over the volume. The general solution 
of our homogeneous wave equation is then shown to be expressible 
as a sum of particular solutions, 

u = ^2Anwn(xf y, z)eik»vt 

n 

where the An's are arbitrary, and may be used to satisfy initial condi
tions at t = 0. To satisfy these initial conditions, we must expand the 
initial value of u> say W(xy y, 2), in series of the form 

W(X, y, Z) = YJ AnWn 
n 

and so determine the constants An. Such an expansion is easily car
ried out, in virtue of the orthogonality of the wn's:we merely multiply 
both sides of the equation by a particular wm integrate over the vol
ume, and have 

i m = Wwmdv / I Wmdv. 

This is an expansion analogous to a Fourier expansion, and many of 
the properties characteristic of the Fourier expansion hold here too. 

We may set up a space of an infinite number of dimensions in which 
the Am's are plotted as the coordinates of a point. Such a point repre
sents a function; the space is called a function space, or a Hubert 
space, and the property of orthogonality can be interpreted geometri
cally in function space. Through such paths we are led to a sort of 
vector analysis in a space of an infinite number of dimensions; that 
is, we are led to a form of linear algebraic equations formally equiva
lent to the solution of the partial differential equation. This is a trans
formation of great power in all problems of this type, a transformation 
which for example allows us to solve problems in perturbations : if we 
know the solution of a problem near to the desired one, we can expand 
the solution of the desired problem in terms of the characteristic func
tions of the similar soluble problem, and, using the algebraic form 
of the problem, we can find the expansion coefficients as power series 
in the small perturbation. 

By using the method of orthogonal expansion, we can solve the in-
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homogeneous wave equation, for we can expand both w and the in-
homogeneous function ƒ (#, y, z) in series in the ze/n's, and equate terms 
on both sides of the equation. An interesting case is found where the 
inhomogeneous part of the equation varies sinusoidally with time. If, 
for instance, we have the equation 

1 d2u 
V2u = f(x, y, z)eiù)t 

v2 dt2 

and if we let u=^2nUnwne
iut

t f==£ltnFnwn, then, remembering that 
V2wn+ (o)l/v2)wn= 0 (where col/v2 is written for the earlier kn), we 
have 

, 2 _ K 
Z) Uni r — I Wn = Y^FnWn 
n \ V2 / 

or, equating terms, 
2 2 2 

Un = FnV / (« ~ «„), 

showing that the coefficients Un show a dependence on o) similar to 
that of the amplitude of a linear oscillator of natural frequency co», 
forced by an external frequency co. We are led by following this argu
ment to a theory of the normal modes of oscillation, closely related 
to the normal coordinates of a vibrating system of a finite number of 
degrees of freedom. We find, in fact, that we can build up the whole 
theory of the orthogonal functions and normal modes of the wave 
equation by a generalization of the theory of mechanical oscillations 
of a system of a finite number of degrees of freedom, to the case where 
the number of degrees of freedom becomes infinite. 

The extensive development of the theory of orthogonal functions, 
which we have merely sketched, is very beautiful and very general, 
but its usefulness is severely limited by the very narrow range of 
problems for which we can actually obtain the solutions and find the 
orthogonal functions. The problems which are soluble by classical 
means are only those in which a separation of variables is possible; 
that is, in which w can be written as a product of functions 
X{£)H(r))Z(C), where £, 77, f are three variables, functions of x, y, z> 
such that the boundaries are determined by setting either £, 77, or J* 
equal to constants. It can be shown that there are only eleven sets 
of coordinates in which separation can be effected, the familiar ones 
being rectangular, cylindrical, spherical, and ellipsoidal coordinates. 
These soluble problems are important, but the insoluble ones, with 
more complicated boundary conditions, are more so, and at present 
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we know no elegant ways of getting solutions in such cases. Physicists 
at tempt to devise approximate ways of computing the characteristic 
functions and characteristic numbers of such problems, but these 
methods lack generality. No problem which the mathematician could 
attack would be more useful to the physicist at present than a real 
advance in the solution of the non-separable wave equation. 

The other method of solving the wave equation, which shows as 
much generality as the method of orthogonal functions, is Green's 
method. The most familiar example of this is found in the solution of 
Poisson's equation, V2<£ = — 47rp(#, y, z), for the potential </>(#, y, z) de
termined by a density of charge p(x, y, z). The solution is <£ ~J(p/r)dv, 
where r is the distance from the point where p is computed to the 
place where we are finding #. This holds if the boundary condition 
is that the potential is to vanish at infinite distance. If instead the 
potential is to have specified values over a finite boundary, surface 
integrals must be added to the volume integral, arising from the so-
called Green's distribution over the surface. If we have the wave 
equation instead of Poisson's equation, we then meet the Kirchhoff 
solution, in which we must use the retarded potential, computing the 
p which appears in the integral not a t the time t a t which we want to 
find <j>, but a t a time earlier by the amount r/v, such that a disturb
ance leaving the point of integration at the earlier time, traveling with 
the velocity v, would reach the point xyz a t time /. These solutions are 
very general and very powerful, but often not very convenient for 
computation. We can naturally show the equivalence of the method 
of orthogonal functions and of Green's function, and in this way can 
exhibit interesting interrelationships between the theory of integral 
equations (to which Green's method naturally leads us) and the the
ory of orthogonal functions and of function space. The mathematical 
interrelationships of all these ways of handling the wave equation 
should be the familiar stock in trade of every physicist. Unfortunately 
they are not ; for the conventional mathematical texts and college and 
university courses concentrate almost entirely on the soluble cases of 
potential theory rather than on the powerful general methods and the 
relationships between them. The physicist, rather than the mathe
matician, is left with the main burden of expanding this branch of 
mathematics. 

Now let us inquire why and how these methods of handling the 
wave equation have come to have so much more importance in the 
last few years. This has come about largely through the wave me
chanics. Everyone realizes by now that it has been found that the 
correct formulation of mechanical problems is through Schrödinger's 
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equation, an equation which is essentially like the wave equation, 
only with a velocity which is a function of x, yy z. Such an equation 
can perfectly well occur in other branches of physics, for instance in 
optics, if the index of refraction varies from point to point, but it had 
been largely neglected by the mathematicians. Schrödinger's equa
tion, however, has forced the physicist to hunt for ways of solving 
this case, approximately or exactly. The problem is further compli
cated by the fact that there are not merely the three coordinates 
x, y, z in addition to time, but 3n coordinates, where n is the number of 
particles concerned in the problem. In spite of this great added diffi
culty, great progress has been made in discussing the practically im
portant cases of Schrodinger's equation. The general method of 
orthogonal functions, with all its ramifications, still applies. Greene 
method, on the other hand, has had almost no study as related to 
Schrodinger's equation; maybe there are unsuspected advances to be 
made in that direction. At any rate, wave mechanics has widened the 
horizons and strengthened the techniques of the physicist when deal
ing with the wave equation. It has also clearly shown that the im
portance of the method of variations, and the method of classical 
mechanics, which I mentioned earlier, was exaggerated in earlier pe
riods. For it shows that the principle of least action is an approximate 
principle giving the path of a ray, as Fermat's principle is in optics, 
and is merely a derived result of the wave equation ; and that classical 
mechanics is likewise a limiting case, describing the limiting motion 
of a so-called wave packet, in the case of large-scale objects. 

Wave mechanics has greatly broadened and strengthened the grasp 
of the physicist on the wave equation, and has made him more 
anxious than ever to learn more and more powerful techniques for 
handling it. This broadened grasp has reacted in other applications 
of physics. My colleagues Morse and Bolt have been applying the 
methods learned in wave mechanics to the study of acoustics, to 
sound waves in rooms and other enclosures, with the result that they 
are changing the whole line of development of that science. Many of 
us working on radar during the war have been applying our knowledge 
of wave mechanics to help us in the solution of electromagnetic prob
lems, with very satisfactory results. For instance, I have been using 
the method of expansion in orthogonal functions for a general study 
of electromagnetic oscillations in a cavity, leading to formulas like the 
ones I mentioned earlier for the solution of an inhomogeneous wave 
equation, which resembles the formula for a forced oscillator. In elec
tromagnetic language, this becomes the formulation of the behavior 
of an oscillating cavity in terms of an equivalent circuit, and it gives 
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a complete theory of the circuit-like behavior of a cavity, a result of 
great practical importance in microwave theory. This is an example 
of a case where the general theory has important uses, even in the 
absence of exact solutions for special cases; for the general theory tells 
us the type of functional behavior we can expect, in terms of certain 
undetermined constants, and in our practical work we have deter
mined those constants experimentally, in cases where we could only 
estimate them crudely from numerical calculation. 

The applications of wave theory will extend far beyond such ex
amples, however. For it becomes clear that wave mechanics is furnish
ing at least a beginning for the study of nuclear forces, and the 
behavior of particles of very high energies. We are then at the thresh
old of a great new field of theoretical physics, for which we are very 
conscious that we do not a t present possess the answer. Such theory 
as we have is a development of the types of theory that I have 
sketched this evening. On the other hand, it is very tentative and 
unsatisfactory. For one thing, there are points of the utmost impor
tance in which the theory, which takes the form of an expansion in 
power series, gives series that fail to converge. In some cases, these 
divergences seem to result from an unhappy choice of the form of 
expansion to use; in other cases they are inherent. In those cases, more 
than in any other which physicists have yet had to face, convergence 
or divergence is a major problem. Here it is the physicists who are 
likely to elucidate the inner nature of the problem, as Gibbs, in a very 
similar case, pointed out the true nature of the so-called Gibbs phe
nomenon in Fourier expansion. It seems likely that the real solution 
of our physical problems will not be accomplished without at the same 
time bringing about real extensions of our mathematical knowledge. 

At this point, I return to my introduction. More and more of 
physics is being found to be subject to the wave equation. The physi
cist needs to know more than he does about it, both in the matter 
of the general theory, and of the solution of special problems. Yet 
the physicist finds very little help from the mathematician. For every 
mathematician like von Neumann who realizes these problems, and 
contributes practically to them, there are twenty who seem to have 
no interest in them, who either work in fields of only remote interest 
to physics, or who stress the older and more familiar parts of mathe
matical physics. Is it any wonder that in such a situation the physi
cist, looking at the mathematicians, feels that they have strayed from 
the path which has led to the past greatness of mathematics, and 
feels that they will not regain this path until they again resolutely 
enter the main current of progress of mathematical physics, the cur-
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rent which in the past has led to the most fruitful development of 
mathematics? Gibbs was great because he kqpt close to earth, always 
knew what his theory was for. That, the physicist firmly feels, is the 
only path through which the mathematician of the present can 
achieve greatness. 
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