THE ASANO POSTULATES FOR THE INTEGRAL DOMAINS OF A LINEAR ALGEBRA

FRED KIOKEMEISTER

1. Introduction. The multiplicative ideal theory for a noncommutative ring A as developed by Asano¹ postulates the existence in A of a maximal bounded order R which satisfies the maximal chain condition for two-sided R-ideals contained in R and the minimal chain condition for one-sided R-ideals in R containing any fixed two-sided R-ideal. Let A be a separable algebra over the field P, and let P be the quotient field of the domain of integrity g. It has been shown [2, pp. 123-126] that if g has a Noether ideal theory, then a maximal domain of g-integers exists in A and satisfies the conditions of the Asano theory. It is the purpose of this paper to prove that the condition of separability can be removed from A and that it need only be postulated that A shall have an identity.

2. Subgroups of direct sums. Let G be a commutative group with operator domain Ω . Let G be the direct sum of the Ω -subgroups G_1, G_2, \dots, G_n . We shall write $G = G_1 + G_2 + \dots + G_n$. The direct summand G_i gives rise to a projection α_i which is an endomorphism of G on G_i : if $g = g_1 + g_2 + \dots + g_n$, $g_i \in G_i$, then $\alpha_i g = g_i$. The sum $\alpha_1 + \alpha_2 + \dots + \alpha_n$ is the identity operator I. Furthermore the sum of any subset of the projections $\alpha_1, \alpha_2, \dots, \alpha_n$ is a projection. We shall label in particular the operators $\delta_i = \sum_{j=1}^i \alpha_j$. Then $\delta_1 = \alpha_1$, and $\delta_n = I$. In general $\delta_{i+1} = \delta_i + \alpha_{i+1}$. If $\omega \in \Omega$, then $\omega \alpha_i = \alpha_i \omega$, and as a result $\omega \delta_i = \delta_i \omega$; that is, α_i and δ_i are Ω -operators. It follows that $\alpha_i H$ and $\delta_i H$ are Ω -subgroups whenever H is an Ω -subgroup.

LEMMA 1. Let the commutative group $G = G_1 + G_2 + \cdots + G_n$ contain the Ω -subgroups H and K. If $H \supseteq K$, then $\alpha_i H \supseteq \alpha_i K$, $\delta_i H \supseteq \delta_i K$, and $\delta_i H \cap G_i \supseteq \delta_i K \cap G_i$.

Since $H \supseteq K$, the image $\alpha_i K$ of K under the homomorphism of H on $\alpha_i H$ must be contained in $\alpha_i H$. By the same argument $\delta_i H \supseteq \delta_i K$, and therefore $\delta_i H \cap G_i \supseteq \delta_i K \cap G_i$.

LEMMA 2. Let the commutative group $G = G_1 + G_2 + \cdots + G_n$ contain the Ω -subgroups H and K. If $H \supseteq K$ and if $\alpha_i H = \alpha_i K$, $\delta_i H \cap G_i = \delta_i K \cap G_i$, then H = K.

Presented to the Society, November 25, 1944; received by the editors February 10, 1945.

¹ Cf. Asano [1], Jacobson [2]. We use here the formulation of these postulates given by Jacobson. Numbers in brackets refer to the references at the end of the paper.

Since $\delta_1 = \alpha_1$ and $\alpha_1 H = \alpha_1 K$, it follows that $\delta_1 H = \delta_1 K$.

We shall assume that $\delta_i H = \delta_i K$ and prove that under this assumption $\delta_{i+1}H = \delta_{i+1}K$. Since $\delta_{i+1}K = (\delta_i + \alpha_{i+1})K \subseteq \delta_i K + \alpha_{i+1}K$ and $\delta_{i+1}K \subseteq \delta_{i+1}H$, it is obvious that $\delta_{i+1}K \subseteq (\delta_i K + \alpha_{i+1}K) \cap \delta_{i+1}H$. On the other hand let $\delta_i k_1 + \alpha_{i+1} k_2$ be an element of $\delta_i K + \alpha_{i+1}K$ contained in $\delta_{i+1}H$. Consider that $(\delta_i + \alpha_{i+1})k_1$ is an element of $\delta_{i+1}K$ and therefore an element of $\delta_{i+1}H$. Then $\delta_{i+1}H$ contains $\delta_i k_1 + \alpha_{i+1} k_2 - (\delta_i + \alpha_{i+1})k_1 = \alpha_{i+1}(k_2 - k_1)$ which lies in $\delta_{i+1}H \cap G_{i+1} = \delta_{i+1}K \cap G_{i+1} \subseteq \delta_{i+1}K$. It follows immediately that $\delta_i k_1 + \alpha_{i+1} k_2 = (\delta_i + \alpha_{i+1})k_1 + \alpha_{i+1}(k_2 - k_1)$ lies in $\delta_{i+1}H \cap (\delta_i K + \alpha_{i+1}K) = \delta_{i+1}K$. However, since $\delta_i K = \delta_i H$ and $\alpha_{i+1}K = \alpha_{i+1}H$, then $\delta_i K + \alpha_{i+1}K = \delta_i H + \alpha_{i+1}H$, and $\delta_{i+1}K = \delta_{i+1}H$.

The lemma follows by finite induction; for $\delta_n H = H$, $\delta_n K = K$.

LEMMA 3. Let the commutative group $G = G_1 + G_2 + \cdots + G_n$ contain the Ω -subgroup H. Let γ be an automorphism of G contained in the centrum of Ω . Then $H \supseteq \gamma H$, $\alpha_i H \supseteq \alpha_i (\gamma H) = \gamma(\alpha_i H)$, and $\delta_i H \cap G_i \supseteq \delta_i (\gamma H)$ $\cap G_i = \gamma(\delta_i H \cap G_i)$.

The automorphism γ lies in the centrum of Ω and therefore γH will be an Ω -subgroup of H. It follows by Lemma 1 that $\alpha_i H \supseteq \alpha_i(\gamma H)$, $\delta_i H \supseteq \delta_i(\gamma H)$, and $\delta_i H \cap G_i \supseteq \delta_i(\gamma H) \cap G_i$. Since γ lies in Ω and α_i and δ_i are Ω -operators, $\alpha_i(\gamma H) = \gamma(\alpha_i H)$ and $\delta_i(\gamma H) = \gamma(\delta_i H)$.

It remains to prove that $\delta_i(\gamma H) \cap G_i = \gamma(\delta_i H \cap G_i)$. Consider that $\gamma G_i = \gamma \alpha_i G = \alpha_i \gamma G = \alpha_i G = G_i$. Then $\delta_i(\gamma H) \cap G_i = \delta_i(\gamma H) \cap \gamma G_i = \gamma(\delta_i H) \cap \gamma G_i = \gamma(\delta_i H) \cap \gamma G_i$. Let $\gamma \delta_i h = \gamma g_i$; γ is an automorphism, and $\delta_i h = g_i$. It follows that $\gamma(\delta_i H) \cap \gamma G_i \supseteq \gamma(\delta_i H \cap G_i)$. But certainly $\gamma(\delta_i H \cap G_i) \subseteq \gamma(\delta_i H) \cap \gamma G_i$ for any operator γ .

THEOREM 1. Let G be a commutative Ω -group, and let Ω contain an automorphism γ in its centrum. Let G be the direct sum of the Ω -subgroups G_1, G_2, \cdots, G_n , and let G contain the Ω -subgroup H. If for every Ω -subgroup A_i of G_i the Ω -group $A_i/\gamma A_i$ satisfies the minimal (maximal) chain condition for Ω -subgroups of $A_i/\gamma A_i$, then the Ω -group $H/\gamma H$ satisfies the minimal (maximal) chain condition for Ω -subgroups of $H/\gamma H$.

A chain of Ω -subgroups

(A)
$$H \supset H_1 \supset H_2 \supset \cdots \supset \gamma H$$

implies, by Lemmas 1 and 3, the existence of the 2n chains

$$\begin{array}{ll} \alpha_{i}H \supseteq \alpha_{i}H_{1} \supseteq \alpha_{i}H_{2} \supseteq \cdots \supseteq \gamma(\alpha_{i}H), & i = 1, 2, \cdots, n, \\ (B) \quad \delta_{i}H \cap G_{i} \supseteq \delta_{i}H_{1} \cap G_{i} \supseteq \delta_{i}H_{2} \cap G_{i} \\ \supseteq \cdots \supseteq \gamma(\delta_{i}H \cap G_{i}), & i = 1, 2, \cdots, n. \end{array}$$

FRED KIOKEMEISTER

Lemma 2 implies that if the chain (A) is infinite, at least one of the chains (B) must be nontrivially infinite. If the minimal chain condition fails in $H/\gamma H$, it must fail in one of the groups $\alpha_i H/\gamma(\alpha_i H)$ or $\delta_i H \cap G_i/\gamma(\delta_i H \cap G_i)$ where $\alpha_i H$ and $\delta_i H \cap G_i$ are Ω -subgroups of G_i .

The statement of the theorem for maximal chains follows by the same argument.

3. Chains of g-modules. Let g be a domain of integrity with Noether ideal theory. This implies that in g every ideal is the product of powers of prime ideals and that a prime ideal is divisorless. If P is the quotient field of g, fractional ideals are defined in P. The set of all ideals in P forms a group under multiplication. In particular if a is an ideal, a^{-1} will exist such that $aa^{-1} = g$, and if ac = bc, then a = b.

A g-module in P is a set of elements of P which forms a group under addition and is closed under multiplication by elements of g. The g-module a is an ideal if $\alpha a \subseteq g$ for some element $\alpha \neq 0$ of g. The product of an ideal contained in g and a g-module a is contained in a. If $a \supset b$, the group a/b is a g-module (not contained in P).

LEMMA 4. If g has a Noether ideal theory, and if a is a g-module in the quotient field P of g, the g-module $\alpha/\alpha \alpha$ has a composition series for any element $\alpha \neq 0$ of g.

Let a be a g-module contained in P, and let α be an element not equal to 0 of g. If the principal ideal (α) has the factorization $\mathfrak{p}_1^{r_1}\mathfrak{p}_2^{r_2}\cdots\mathfrak{p}_s^{r_s}$ in g, we shall prove that the chain of g-modules

$$\mathfrak{a} \supseteq \mathfrak{p}_1 \mathfrak{a} \supseteq \mathfrak{p}_1^2 \mathfrak{a} \supseteq \cdots \supseteq \mathfrak{p}_1^{r_1} \mathfrak{a} \supseteq \mathfrak{p}_1^{r_1} \mathfrak{p}_2 \mathfrak{a} \supseteq \cdots \supseteq \alpha \mathfrak{p}_{\bullet}^{-1} \mathfrak{a} \supseteq \alpha \mathfrak{a}$$

allows no nontrivial refinement. The series

$$\mathfrak{a}/\alpha\mathfrak{a} \supseteq \mathfrak{p}_{1}\mathfrak{a}/\alpha\mathfrak{a} \supseteq \mathfrak{p}_{1}^{2}\mathfrak{a}/\alpha\mathfrak{a} \supseteq \cdots \supseteq \mathfrak{p}_{1}^{r_{1}}\mathfrak{a}/\alpha\mathfrak{a} \supseteq \mathfrak{p}_{1}^{r_{1}}\mathfrak{p}_{2}\mathfrak{a}/\alpha\mathfrak{a} \supseteq \cdots \supseteq \alpha\mathfrak{p}_{s}^{-1}\mathfrak{a}/\alpha\mathfrak{a} \supseteq (0)$$

will include a composition series for $a/\alpha a$.

Let \mathfrak{p} be a prime ideal in g, and let \mathfrak{b} be a g-module contained in P. Assume that between \mathfrak{b} and $\mathfrak{p}\mathfrak{b}$ there lies a g-module c equal to neither: $\mathfrak{b} \supset \mathfrak{c} \supset \mathfrak{p}\mathfrak{b}$. Then there is an element β of \mathfrak{b} not contained in \mathfrak{c} and an element γ of \mathfrak{c} not contained in $\mathfrak{p}\mathfrak{b}$. We form the chain of ideals of $P: (\beta, \gamma) \supset (\mathfrak{p}\beta, \gamma) \supset \mathfrak{p}(\beta, \gamma)$. Since $\mathfrak{p}\beta \subseteq \mathfrak{p}\mathfrak{b} \subset \mathfrak{c}$ and $\gamma \in \mathfrak{c}, (\mathfrak{p}\beta, \gamma) \subseteq \mathfrak{c}$. But β is not an element of \mathfrak{c} , and therefore $(\mathfrak{p}\beta, \gamma)$ and (β, γ) are distinct. Since $\mathfrak{p}(\beta, \gamma) \subseteq \mathfrak{p}\mathfrak{b}$ and γ is not an element of $\mathfrak{p}\mathfrak{b}, \mathfrak{p}(\beta, \gamma)$ and $(\mathfrak{p}\beta, \gamma)$ are distinct. It would follow that $g \supset (\mathfrak{p}\beta, \gamma)(\beta, \gamma)^{-1} \supset \mathfrak{p}$ is a

492

chain of distinct ideals in g. However, the prime ideal \mathfrak{p} is divisorless. It follows that $\mathfrak{a} \supset \mathfrak{pa}$ allows no nontrivial refinement.

If M is a P-module with linearly independent P-basis x_1, x_2, \dots, x_n we shall write $M = Px_1 + Px_2 + \dots + Px_n$.

THEOREM 2. Let $M = Px_1 + Px_2 + \cdots + Px_n$ contain the g-module N. Then if γ is an element not equal to 0 of g, the g-module $N/\gamma N$ has a composition series.

The module N is a g-submodule of the direct sum $Px_1+Px_2+\cdots$ + Px_n . The element γ of g is an automorphism of M, and the operator domain g is commutative. Lemma 4 assures us that for every g-subgroup ax_i of Px_i the g-module $ax_i/\gamma(ax_i) \cong a/\gamma a$ has a composition series. The conditions of Theorem 1 are satisfied, and the g-module $N/\gamma N$ must have a composition series.

4. Orders of finite linear algebras. We shall again assume that g is a domain of integrity with Noether ideal theory and that P is the quotient field of g. We consider a linear algebra A with identity e of order n over the field P.

An order R of A which contains g can be defined to be a subring of A which contains g and a basis for A [2, p. 124]. We shall consider only orders of A which contain g. A left (right) R-ideal of R is a submodule \mathfrak{M} of R such that $R\mathfrak{M} \subseteq \mathfrak{M}$ ($\mathfrak{M} R \subseteq \mathfrak{M}$) and which contains a regular element of A. Then \mathfrak{M} contains an element $\gamma \neq 0$ of g and contains the two-sided ideal γR : every order R is bounded. Since R contains g, R and every R-ideal of R are g-modules.

THEOREM 3. Let g be a domain of integrity with Noether ideal theory, and let P be the quotient field of g. If A is a linear algebra with identity of finite order over P, every order of A which contains g will satisfy the maximal condition for any chain of left (right) R-ideals contained in R and the minimal condition for any chain of left (right) R-ideals in R containing a fixed left (right) R-ideal.

We may consider the algebra A to be the P-module Px_1+Px_2 + \cdots + Px_n where x_1, x_2, \cdots, x_n constitute a linearly independent basis for A over P, and R as a g-submodule of A. An R-ideal \mathfrak{M} of Rcontains an element $\gamma \neq 0$ of g so that $R \supseteq \mathfrak{M} \supseteq \gamma R$. By Theorem 2 every chain of g-modules between R and γR must be finite. In particular a chain of R-ideals between R and \mathfrak{M} must be finite since an R-ideal is a g-module if R contains g.

Two orders R and R' are said to be equivalent if there exist regular elements a, b, c, d of A such that $aRb \subseteq R'$, $cR'd \subseteq R$. An order is said to be maximal if it is contained in no equivalent order.

1946]

The Asano treatment of the ideal theory of a class of equivalent orders depends on three postulates:

I. There exists a maximal bounded order R in the class.

II. The minimal chain condition holds for left R-ideals in R which contain a fixed two-sided R-ideal.

III. The maximal chain condition holds for two-sided R-ideals contained in R.

In Theorem 3 we have shown that postulates II and III are satisfied by any order of A which contains g. If a maximal order exists, it must be bounded since every order is bounded.

An order of A which contains g and contains only integral elements of A is called an integral domain. A maximal integral domain is an integral domain which is contained in no other integral domain.

LEMMA 5. If the order R contains g and is equivalent to the integral domain S, then R is an integral domain.

Since R is equivalent to S there exist regular elements a, b such that $aRb \subseteq S$. Since R is an order of A there exists in g an element $\beta \neq 0$ such that βb^{-1} is an element of R. Then $\beta b^{-1}R \subseteq R$. Similarly S, which is an order of A, must contain αa^{-1} for some element $\alpha \neq 0$ of g, and $\alpha Sa^{-1} \subseteq S$. Then

$$\alpha [a(\beta b^{-1}R)b]a^{-1} \subseteq \alpha [aRb]a^{-1} \subseteq \alpha Sa^{-1} \subseteq S,$$

or

$$(ab^{-1})(\alpha\beta)R(ba^{-1})\subseteq S.$$

Set $\alpha\beta = \gamma$, $ab^{-1} = c$; then $c(\gamma R)c^{-1} \subseteq S$, and $\gamma R \subseteq c^{-1}Sc$ where c is a regular element of A. It follows that γR consists only of integral elements of A.

Let r be an element of R. Let g[r] indicate the polynomial domain generated by r with coefficients in g; g[r] is a commutative ring contained in R. Further $\gamma g[r]$ is a ring of integers. If we consider that g[r] is a g-module contained in the P-module $A = Px_1 + Px_2 + \cdots$ $+ Px_n$ we may apply Theorem 2 to g[r] and obtain that every chain of g-modules between $\gamma g[r]$ and g[r] is finite. If H is the union of g and $\gamma g[r]$, H is a ring of integers, and $\gamma g[r] \subseteq H \subseteq g[r]$. Since $g \subset H$, the chain of H-modules

$$H \subseteq Hr \subseteq (Hr, Hr^2) \subseteq \cdots \subseteq g[r]$$

is a chain of g-modules between H and g[r] and must be finite in length. It follows that r satisfies an equation $r^k = h_1 r^{k-1} + h_2 r^{k-2} + \cdots + h_k r$ with coefficients in H. Then r is g-integral, and R is an integral domain [3, p. 90].

494

COROLLARY. A maximal integral domain S is a maximal order in the class of orders equivalent to S.

We can now establish the existence in A of a maximal order by the following argument: Let all integral domains S_{α} of A be well-ordered. Construct a chain

$$S \subset S_{\sigma_1} \subset S_{\sigma_2} \subset \cdots$$

of domains containing a fixed domain S by choosing S_{σ_1} to be the first which contains S, S_{σ_2} to be the first which contains S_{σ_1} , and so on. The union R of the S_{σ_i} will be a maximal integral domain and, by the above corollary, R is a maximal order. The class of orders equivalent to R will satisfy the Asano postulates.

THEOREM 4. Let g be a domain of integrity with Noether ideal theory, and let P be the quotient field of g. Every linear algebra with identity of finite order P contains a nontrivial class of orders which satisfy the Asano postulates and which contain only integral elements of the algebra.

References

1. K. Asano, Arithmetische Idealtheorie in nichtkommutativen Ringen, Jap. J. Math. vol. 15 (1939) pp. 1-36.

2. N. Jacobson The theory of rings, Mathematical Surveys, vol. 2, New York, 1943.

3. B. L. van der Waerden, Moderne Algebra, vol. 2, Berlin, 1931.

PURDUE UNIVERSITY

1946]