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1. Introduction. The multiplicative ideal theory for a noncommuta-
tive ring A as developed by Asano1 postulates the existence in A of a 
maximal bounded order R which satisfies the maximal chain condition 
for two-sided i?-ideals contained in R and the minimal chain condi
tion for one-sided i?-ideals in R containing any fixed two-sided 
i?-ideal. Let A be a separable algebra over the field P , and let P b e 
the quotient field of the domain of integrity g. I t has been shown [2, 
pp. 123-126] that if g has a Noether ideal theory, then a maximal 
domain of ^-integers exists in A and satisfies the conditions of the 
Asano theory. I t is the purpose of this paper to prove that the con
dition of separability can be removed from A and that it need only 
be postulated that A shall have an identity. 

2. Subgroups of direct sums. Let G be a commutative group with 
operator domain Q. Let G be the direct sum of the O-subgroups 
Gu G2, • • • , Gn. We shall write G = Gi+G2+ • • • + G n . The direct 
sumrnand Gi gives rise to a projection ai which is an endomorphism 
of G on Gii if g = g i + g 2 + • • • +gn, gjGGj, then aig=gi. The sum 
«1+0:2+ • • • +cen is the identity operator I . Furthermore the sum 
of any subset of the projections au a2, • • • , an is a projection. We 
shall label in particular the operators ô»-=2*-ia/- Then 5i=cei, and 
8» = I . In general 5*+i = 5<+a*+i. If co£fl, then <aai = a&>, and as a re
sult o)di = diO); that is, a* and 5* are fl-operators. I t follows that aiH 
and ôiH are Q-subgroups whenever H is an Q-subgroup. 

LEMMA 1. Let the commutative group G = Gi+G2+ • • • +Gn contain 
the Q-subgroups H and K. If H^DK, then aiH^aiK, ôiH^DôiK, and 
ôiHr^Gi^ôiKnGi. 

Since H"3.K, the image aiK of K under the homomorphism of H 
on a%H must be contained in aiH. By the same argument §iiïü2 8ÎK, 
and therefore diHr\Gi'D ÔiKHGi. 

LEMMA 2. Let the commutative group G = Gi+G2+ • • • +Gn contain 
the Q-subgroupsHandK. IfH^KandifaiH=aiKy biHC\Gi =? 8iKr\Gi, 
then H ^K. 
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1 Cf. Asano [l], Jacobson [2]. We use here the formulation of these postulates 
given by Jacobson. Numbers in brackets refer to the references at the end of the paper. 
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Since 5i = ai and aiH — aiK, it follows that ôifiT= ôiK. 
We shall assume that ôiH~8iK and prove that under this as

sumption ôi+iH—ôi+iK. Since ôi+iK = (ôi+ai+i)KÇlôiK+ai+iK and 
ôi+îKÇôi+iH, it is obvious that ôi+1KQ(8iK+ai+iK)r\ôi+1Ht On the 
other hand let Siki+on+ik* be an element of ôiK+oa+iK contained in 
ôi+iH. Consider that (ôi+<Xi+i)ki is an element of ôi+iK and therefore 
an element of 8i+iH. Then ôi+iH contains S,fei+a»^2 —(8*+<*i+i)£i 
=ai+i(k2 — ki) which lies in ôi+iHr^Gi+i— 6i+iKr\Gi+iQôi+iK. It fol
lows immediately that S^i+af+ife — (8<+a*+i)fo+a*+i(&a--fci) lies in 
5t+uK", and 8»+iJ?n(Sli?+a»+iif) = 5i+iiSr. However, since SiK — ôiH 
and a;+iif— on+iH, then ô*-2£+û!»+ii£ = o»iJ+at+iiï", and Si+%K = 8»+iiï 
n(J(ff+aHifl) = «Hiff. 

The lemma follows by finite induction; for 5»iï=il , 5nÜT = JK". 

LBMUA S. Let the commutative group G— G1+G2+ • • • +Gn contain 
the Q-subgroup H. Let y be an automorphism of G contained in the cen
trum of Q. Then HO>yH, mH^a^yH) -y(aiH)) and ««flnG«2 8,(73) 
nG t=7(W2nG»). 

The automorphism 7 lies in the centrum of Q and therefore y H will 
be an Q-subgroup of H. It follows by Lemma 1 that aiH^a^yH), 
5*H2 8i(yH), and otuHGiQ di(yH)n&. Since 7 lies in Q and a» and 
8i are Q-operators, 0Li(yH) *=y(a{H) and 8i(yH) =y(8iH). 

It remains to prove that ôi(yH)r\Gi=y(8iHr\Gi). Consider that 
yGi=yaiG=a%'YG=aiG=Gi. Then ôi(yH)r\Gi = 8i(yH)r\yGi=Y(W5J) 
C\yGi. Let 70»&~7g»; 7 is an automorphism, and hîh — gi. It follows 
that y(ÔiH)r\yGi^y(ôiHr\Gi). But certainly y(8iHnGi)Qy(8iH) 
r\yd for any operator 7. 

THEOREM 1. Le£ G be a commutative Sl-group, and let tt contain an 
automorphism 7 in its centrum. Let G be the direct sum of the Si-sub
groups Gi, G2, • • • , Gn, and let G contain the Q-subgroup H. If for every 
ü-subgroup A i of Gi the Q-group A %/yA % satisfies the minimal (maximal) 
chain condition for Q-subgroups of Ai/yAi, then the Q,-group H/yH sat
isfies the minimal (maximal) chain condition for Q-subgroups ofH/yH. 

A chain of Q-subgroups 

(A) E D Hi D H2 D • • • D yH 

implies, by Lemmas 1 and 3, the existence of the 2n chains 

onE 2 ciiEi 2 a{E2 2 • • • 2 y(<x%E), i «• 1, 2, • • • , n, 

(B) ÔiE r\ d 3 ôiEt H d 2 *<ff 1 C\ & 

2 • • • 2 y(S{B H Gi), i « 1, 2, • • • , n. 
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Lemma 2 implies that if the chain (A) is infinite, at least one of the 
chains (B) must be nontrivially infinite. If the minimal chain condi
tion fails in H/yH, it must fail in one of the groups <XiH/y(<XiH) or 
ôiHr\Gi/y(ôiHnGi) where a{H and biHC\Gi are fl-subgroups of &. 

The statement of the theorem for maximal chains follows by the 
same argument. 

3. Chains of g-modules. Let g be a domain of integrity with 
Noether ideal theory. This implies that in g every ideal is the product 
of powers of prime ideals and that a prime ideal is divisorless. If P 
is the quotient field of g, fractional ideals are defined in P . The set 
of all ideals in P forms a group under multiplication. In particular 
if a is an ideal, a*""1 will exist such that aa~*1==g, and if ac= be, then 
a = 6 . 

A g-module in P is a set of elements of P which forms a group under 
addition and is closed under multiplication by elements of g. The 
g-module a is an ideal if act Cg for some element a =^0 of g. The prod
uct of an ideal contained in g and a g-module a is contained in a. If 
O b , the group a/b is a g-module (not contained in P ) . 

LEMMA 4. If g has a Noether ideal theory, and if a is a g-module in 
the quotient field P of g, the g-module a/aa has a composition series f or 
any element as^O of g. 

Let a be a g-module contained in P , and let a be an element not 
equal to 0 of g. If the principal ideal (a) has the factorization 
pirip2r2 • • • p/* in g, we shall prove that the chain of g-modules 

a 2 )îia 2 pia 2 • • • 2 p[a 3 j h ^ a 3 . . . 3 «p,"a 3 «a 

allows no nontrivial refinement. The series 
2 ri 

a/aa 3 pxct/W 3 jhct/aa 3 . . . 3 pi a/aa 

2 )h p2Ct/aa 3 . . . 3 ap7 a/aa 3 (0) 

will include a composition series for a/aa. 
Let p be a prime ideal in g, and let b be a g-module contained in P . 

Assume that between b and pb there lies a g-module c equal to neither: 
bDcDpb. Then there is an element ]8 of b not contained in c and 
an element y of c not contained in pb. We form the chain of ideals 
of P : (j8, 7)D(Pi3, 7)Dp(/3, 7) . Since p/3CpbCc and 7 6 c , (pj8f 7 ) £ c . 
But ]8 is not an element of c, and therefore (p/3, 7) and (/3, 7) are dis
tinct. Since p(j3, 7 ) £ p b and 7 is not an element of pb, p(/3, 7) and 
(p/3, 7) are distinct. I t would follow that gD(p/3, 7)(/3, 7 ) ~ O p is a 
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chain of distinct ideals in g. However, the prime ideal p is divisorless. 
It follows that O p a allows no nontrivial refinement. 

If M is a P-module with linearly independent P-basis xi, x%, • • • ,xn 

we shall write M~Pxi+Px2+ • • • +Pxn. 

THEOREM 2. Let M =*Pxi+Px2+ • • • +Pxn contain the g-module N. 
Then if y is an element not equal to 0 of g, the g-module N/yN has a 
composition series. 

The module N is a g-submodule of the direct sum Pxi+Px2+ • • • 
+Pxn. The element 7 of g is an automorphism of M, and the operator 
domain g is commutative. Lemma 4 assures us that for every ^-sub
group axi of Pxi the g-module axi/y(axi)^a/ya has a composition 
series. The conditions of Theorem 1 are satisfied, and the g-module 
N/yN must have a composition series. 

4. Orders of finite linear algebras. We shall again assume that g 
is a domain of integrity with Noether ideal theory and that P is the 
quotient field of g. We consider a linear algebra A with identity e of 
order n over the field P. 

An order R of A which contains g can be defined to be a subring of 
A which contains g and a basis for A [2, p. 124]. We shall consider 
only orders of A which contain g. A left (right) P-ideal of R is a sub-
module 2W of R such that P9flC9ft (5DÎPCSDÎ) and which contains a 
regular element of A. Then SDÎ contains an element 7 5̂ 0 of g and con
tains the two-sided ideal yR: every order R is bounded. Since R con
tains g, R and every P-ideal of R are g-modules. 

THEOREM 3. Let g be a domain of integrity with Noether ideal theory, 
and let P be the quotient field of g. If A is a linear algebra with identity 
of finite order over P, every order of A which contains g will satisfy the 
maximal condition for any chain of left {right) R-ideals contained in R 
and the minimal condition for any chain of left (right) R-ideals in R 
containing a fixed left (right) R-ideal. 

We may consider the algebra A to be the P-module Pxi+Px2 

+ • • • +Pxn where xif x2, • • • , xn constitute a linearly independent 
basis for A over P, and R as a g-submodule of A. An i?-ideal 2W of R 
contains an element 7?*0 of g so that P29DÎ37P. By Theorem 2 
every chain of g-modules between R and yR must be finite. In par
ticular a chain of P-ideals between R and SD? must be finite since an 
P-ideal is a g-module if R contains g. 

Two orders R and R' are said to be equivalent if there exist regular 
elements a, b, c, d of A such that aRbQR', cR'dQR. An order is said 
to be maximal if it is contained in no equivalent order. 
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The Asano treatment of the ideal theory of a class of equivalent 
orders depends on three postulates ; 

I. There exists a maximal bounded order R in the class. 
II. The minimal chain condition holds for left i?-ideals in R which 

contain a fixed two-sided i?-ideal. 
III. The maxinlal chain condition holds for two-sided i?-ideals con

tained in R. 
In Theorem 3 we have shown that postulates II and III are satisfied 

by any order of A which contains g. If a maximal order exists, it must 
be bounded since every order is bounded. 

An order of A which contains g and contains only integral elements 
of A is called an integral domain. A maximal integral domain is an 
integral domain which is contained in no other integral domain. 

LEMMA 5. If the order R contains g and is equivalent to the integral 
domain 5, then R is an integral domain. 

Since R is equivalent to S there exist regular elements a, b such 
that aRbClS. Since R is an order of A there exists in g an element 
jS^O such that fib"1 is an element of R. Then jSJ-^Ci?. Similarly S, 
which is an order of A, must contain aa*1 for some element a 5̂ 0 of g, 
and aSarlÇ.S. Then 

oi[a{pb-lR)b]a-1 C a[aRb]ar1 C aSa"1 C 5, 
or 

(ab-^iaftRiba-1) C 5. 

Set a/3 = 7, ab~~l~c\ then c(yR)c"-'1QSf and yRQc^Sc where c is a 
regular element of A. It follows that yR consists only of integral ele
ments of A. 

Let r be an element of i?. Let g[r] indicate the polynomial domain 
generated by r with coefficients in g; g [r] is a commutative ring con
tained in R. Further yg[r] is a ring of integers. If we consider that 
g[r] is a g-module contained in the P-module A=Pxi+Px2+ • • • 
+Pxn we may apply Theorem 2 to g[r] and obtain that every chain 
of ^-modules between yg[r] and g[r] is finite. If H is the union of g 
and 7g|V], H is a ring of integers, and Y^]£-ffCg[V]. Since gCH, 
the chain of jfï-modules 

BQHrQ (Br, Hr2) C . • . C g[r] 

is a chain of ^-modules between H and g[r] and must be finite in 
length. It follows that r satisfies an equation rk=*hirk-1+h2rk~2+ • • • 
+hkr with coefficients in H. Then r is ^-integral, and R is an integral 
domain [3, p. 90]. 
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COROLLARY. A maximal integral domain S is a maximal order in the 
class of orders equivalent to S. 

We can now establish the existence in A of a maximal order by the 
following argument: Let all integral domains Sa of A be well-ordered. 
Construct a chain 

S C S9l C S„ C • • • 

of domains containing a fixed domain S by choosing Sn to be the first 
which contains 5, Sff2 to be the first which contains Sffv and so on. The 
union R of the S^ will be a maximal integral domain and, by the 
above corollary, R is a maximal order. The class öf orders equivalent 
to R will satisfy the Asano postulates. 

THEOREM 4. Let g be a domain of integrity with Noether ideal theory, 
and let P be the quotient field of g. Every linear algebra with identity of 
finite order P contains a nontrivial class of orders which satisfy the 
Asano postulates and which contain only integral elements of the algebra. 
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