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1. Introduction. In his fundamental paper [5]1 on Boolean rings, 
Stone showed that a Boolean ring, that is, a ring R with the property 
that a2 = a for every element a of R, is necessarily commutative. Re
cently, Kaplansky [3] announced that this result can be extended 
and that, under certain rather strong conditions on the positive in
teger n, a ring R is commutative if an±=a for every element a of R. 
Furthermore, Jacobson [2 ] has now shown that this is true without 
restriction on n. In fact, he has established the following more general 
result : 

THEOREM 1 (JACOBSON). If for each element a of a ring R there exists 
an integer n(a) > 1, depending on a, such that aw(a) =a , then R is com
mutative. 

A simple calculation [2, p. 702] shows that every element of a ring 
satisfying the hypothesis of this theorem has finite additive order. 
Thus if a division ring satisfies the hypothesis, its prime field is neces
sarily finite. Theorem 8 of [2] then furnishes a short and elegant 
proof of Theorem 1 for the case of division rings. The proof of the 
theorem can then be completed by obtaining a "reduction to division 
rings," that is, a proof that the theorem is true for all rings if it is 
true for all division rings. Jacobson accomplishes this by use of some 
rather deep results on algebraic algebras. The principal purpose of the 
present note is to present a simple reduction to division rings which 
was obtained independently by the present authors. This, coupled 
with Jacobson's proof of the result for division rings, furnishes a short 
and simple proof of Theorem 1. 

We shall give, in §3, an entirely elementary proof of this theorem 
for the special case in which R is of prime characteristic p and ap = a 
for every element a of R. Such a ring is a p-ring [4], which is perhaps 
the simplest and most natural generalization of a Boolean ring. 

2. The reduction to division rings. We shall, in fact, treat a some
what more general case which may be of some interest in itself. 

We recall that, according to Birkhoff [ l ] , a ring R is subdirectly 
irreducible if the intersection of all nonzero two-sided ideals in R is a 
nonzero ideal. The following fundamental theorem is essential for our 
purpose : 
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THEOREM 2 (BIRKHOFF). Any ring is isomorphic to a subdirect sum 
of subdirectly irreducible rings. 

We shall begin by proving the following lemma: 

LEMMA 1. In a ring S without nonzero nilpotent elements, every idem-
potent is in the center. 

Let e be an idempotent in the ring S, and x an arbitrary element 
of 5. Then 

(exe — ex)2 = exexe — exex — exexe + exex = 0. 

Thus exe = ex. and a similar calculation shows that also exe — xe% Hence 
ex=xe, and e is in the center. 

LEMMA 2. If S is a subdirectly irreducible ring without nonzero nil-
potent elements, then the only idempotents in S are the zero and the unit 
element in case S has a unit element. 

To prove this, let us assume that e is an idempotent in S, neither 
0 nor 1, and show that S is not subdirectly irreducible. By Lemma 1, 
e is in the center of S and thus the set of all elements of the form 
x — ex, xÇzS, is a two-sided ideal a in S. Furthermore, a is not (0) 
since otherwise e would be the unit element, contrary to hypothesis. 
Let 6 be the two-sided ideal in S consisting of those elements of the 
form&x;, # £ 5 . Then b-^(O) since it contains e2 = e 5^0. Now ctnb = (0), 
for if x—ex~ey, multiplication by e shows that ey~0. Hence S can 
not be subdirectly irreducible. 

A ring R is a regular ring [ô] if for each element a of R there exists 
an element x such that 

(1) axa = a. 

We do not assume the existence of a unit element. From (1), it fol
lows that ax is idempotent. If R has no nonzero nilpotent elements, 
Lemma 1 shows that ax is in the center of R, and hence (1) may be 
written in the form a2x~a. Conversely, if a 3^0, the existence of an x 
such that a2x=a certainly implies that a is not nilpotent. We have 
thus established the following lemma: 

LEMMA 3. A regular ring R has no nonzero nilpotent elements if and 
only if for each element a of R there is an element x such that a2x—a. 

We may now easily complete the proof of the following theorem 
which is the principal result of this note : 
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THEOREM 3. A regular ring R is isomorphic to a subdirect sum of 
division rings if and only if R has no nonzero nilpotent elements. 

The necessity of the condition is obvious. To prove the sufficiency, 
we consider a regular ring R without nonzero nilpotents which, by 
Theorem 2, is isomorphic to a subdirect sum of subdirectly irreducible 
rings Ri. Now each Ri is a homomorphic image of R and therefore a 
regular ring and, by use of Lemma 3, we see that no Ri has nonzero 
nilpotent elements. Thus, by Lemma 2, i?» can have no idempotents 
other than the zero and the unit element. Now if ai is any nonzero 
element of Ri there is an Xi such that a»x*ai=a». Thus aiXi^O and is 
idempotent. It follows that aiXi is the unit element of Ri and, by a 
similar argument, #t-at- is also seen to be the unit element. Since every 
nonzero element of Ri has an inverse, Ri is a division ring. 

Theorem 3 clearly contains, as a special case, the desired reduction 
of Theorem 1. For a ring R satisfying the condition of Theorem 1 is 
obviously regular and has no nonzero nilpotents. Hence such a ring 
is isomorphic to a subdirect sum of division rings each of which satis
fies the condition of the theorem. 

We are indebted to the referee for the following remark. If a is 
any nonzero element of an algebraic algebra without nonzero nil-
potent elements, the subalgebra generated by a is of finite order and 
semi-simple. It is therefore a full direct sum of a finite number of 
fields and thus the equation axa —a has a solution. Such an algebra 
is therefore regular and we have another proof of the following result 
due to Jacobson [2, Corollary to Theorem 6]: 

COROLLARY. An algebraic algebra without nonzero nilpotent elements 
is isomorphic to a subdirect sum of division algebras. 

3. A special case. We now let R be a ring of prime characteristic p 
with the further property that ap = a for every element a of R, and 
shall give an elementary proof that R is commutative.2 

If a and b are any two elements of R, we must have 

(a + by = a + b = a* + [a^b] + [a^2b2] H 
J + [ab*-1] + K 

where 

(3) [a*-1*] = a*~lb + a*~2ba -\ + aba»"2 + ba*"1, 

and, in general, [aW] is a sum of products of elements a and b, in 
2 Professor Jacobson has informed us that hè has also obtained a simple proof in 

this case. 
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each term of which a appears i times and b appears j times. Since 
ap = a, bp = b, we see from (2) that 

(4) [a^b] + [a*~2b2] H + [ab*-1] = 0. 

Now (4) is true for all elements a and b, hence we may replace b in 
turn by 2b, 3b, • • • , (p — l)b, thus getting the following system of 
equations, the first of which is merely equation (4) : 

[a^b] + [a*~2b2] + • • • + [abr-1] = 0, 

2[a*~ib] + 22[a»-2b2] + • • • + 2p~1[abp~1] = 0, 

(p - l)[a^b] + (p- l)2[ap~2b2] + . . . + ( £ - 1 ) * - I [ Ö J * - I ] = 0. 

Now let m denote the Vandermonde determinant | iJ'\ (i,j = 1, 2, • • • , 
p — 1), and wi, w2, • • • , Wp-,1 the cofactors of the elements of the first 
column of m. If we multiply the equations (5) by wi, W2, • • • , % , i , 
respectively, and add, we get w[a p~ 1o]=0. Now m is known to be 
a product of positive integers less than p, hence is prime to p; thus 
we must have [ap~1b]=0. A simple calculation, using the explicit 
formula (3), and making use of ap = a, shows that 

0 = a[ap~~lb} - [ap~lb]a = ab - Ja. 

Since a and & are arbitrary elements of R, this proves that R is com
mutative. 

REFERENCES 

1. Garrett Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 
vol. 50 (1944) pp. 764-768. 

2. Nathan Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. 
of Math. vol. 46 (1945) pp. 695-707. 

3. Irving Kaplansky, The commutativity of generalized Boolean rings, Bull. Amer. 
Math. Soc. Abstract 51-1-9. 

4. N. H. McCoy and Deane Montgomery, A representation of generalized Boolean 
rings, Duke Math. J. vol. 3 (1937) pp. 455-459. 

5. M. H. Stone, The theory of representations f or Boolean algebras, Trans. Amer. 
Math. Soc. vol. 40 (1936) pp. 37-111. 

6. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) 
pp.707-713. 

VASSAR COLLEGE AND 
SMITH COLLEGE 


