
BOUNDED /-FRACTIONS 

H. S. WALL 

1. Introduction. A /-fraction 

1 

(1.1) 

2 

ax 

h + z 
b2 + z — 

2 

fa + z — 

in which the coefficients ap and bp are complex constants and z is a 
complex parameter, is said to be bounded if there exists a constant M 
such that 

(1.2) | ap\ £ M/3, \bp\£ M/3, p = 1, 2, 3, • • • . 

This condition can be formulated in terms of /-forms in accordance 
with the following theorem. 

THEOREM 1.1. The J-fraction (1.1) is bounded if and only if there 
exists a constant N such that 

(1-3) 

z2 bpupvp — X) Vp(uPvp+i + up+ivp) 
2 > * = 1 p« l ! 

1/2 

^ ( È K h Z K I 2 ) , ** = 1,2,3, 

for all values of the variables up and vp, the constant N being independent 
of the variables and of n. 

In fact, if (1.3) holds then we find, on specializing the values of 
the up and vp, tha t |&p| SN, \ap\ giV, £ = 1, 2, 3, • • • ; and if (1.2) 
holds then, by Schwarz's inequality, (1.3) holds with N=M. 

If (1.3) holds, then the /-form ] [ > pupvp — X A (UPVP+I+up+ivp) is 
said to be bounded, and the least value of N which can be used in that 
inequality is called the norm of the /-form. We shall also call this 
number the norm of the /-fraction. When (1.2) holds then, as pointed 
out above, (1.3) holds with N=M. Hence the norm of the J-fraction 
does not exceed the least number M which can be used in (1.2). 
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THEOREM 1.2. If (1.2) holds, then the J-fraction converges uniformly 
for \z\ &M. 

For if the J-fraction is transformed by an equivalence transforma­
tion so that all the partial denominators are equal to unity, then the 
nth partial numerator is 

2 

(bn-l + *)(»» + Z) 

If |z |^Af, and (1.2) holds, this has modulus not greater than 1/4. 
Hence it follows by a well known theorem that the /-fraction con­
verges uniformly for \z\ *zM. 

In the case of the J-fraction 

1 

1 + z 
1 + z 

1 + 3 -

the least number M which can be used in (1.2) is M=3. Hence the 
J-fraction converges uniformly for \z\ ^ 3 . I t diverges if z is real, posi­
tive, and less than 3. On the other hand, for the J-fraction 

(1/4) 
z 

(1/4) 
z 

the least value of M which can be used in (1.2) is M=3/2. The norm 
of this J-fraction is N= 1, and it converges for \z\ ^ 1. In fact, it con­
verges if z is not on the real interval — Kx < + 1 . 

The principal object of this note is to show that a J-fraction with 
norm N converges if z is not in a certain convex set contained in the 
circle \z\ =N. Moreover, if the partial numerators ap

2 are different 
from zero, the corresponding J-matrix has a unique bounded recipro­
cal for all z not in this convex set. I t was shown by Hellinger and 
Toeplitz [3]1 tha t there is a unique bounded reciprocal for \z\ >iV. 

1 Numbers in brackets refer to the Bibliography at the end of the paper. 
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2. Convergence of bounded /-fractions. Let a — eie be a complex 
number with modulus unity. Then the /-fractions (1.1) and 

bid + Z -

Z = az, 
(axa)2 

(2.1) ^ , „ M 2 

M + Z -

are equivalent in the sense that their nth approximants are identical 
with one another for # = 1 ,2 ,3 , • • • . Also, they obviously have one 
and the same norm. 

Let 

(2.2) ap(6) = I(apo), pp(6) = I(bpa), p = 1, 2, 3, • • • . 

Then, if (1.1) is bounded, it follows from (1.3) that there exists a 
finite constant F(0) such that 

n n—1 

(2.3) T,M) + n»)]*,-2'Za p(6)xpXp+i ^ 0 , n = 1, 2, 3, • • • , 

for all real values of xi, #2, #3, • • • . If Fo(0) is the least value of F(0) 
which can be used in (2.3), then we must have 

I Fo(fl) \£N, 0 = 0 < 2TT, 

where iV is the norm of the /-fraction. 
From (2.3) it follows that if we put Z = *F(0)+f in (2.1), then (2.1) 

is a positive definite /-fraction in the variable f. Therefore, if c is a 
positive constant, the wth approximant of (1.1), which is the same as 
the #th approximant of (2.1), satisfies the inequality [ l] 

An(z) 1 
è —; 

c \Bn(z) 

provided /(f) è £ , that is, provided 

(2.4) x sin 0 + y cos 0 = F(0) + c, where 2 = # + iy; 

and 5n(z) 5^0 when (2.4) holds. This can be interpreted geometrically 
as follows. Let K denote the set of all points z=x+iy such that 

x sin 0 + y cos 0 = F(0) for 0 = 0 < 2TT. 
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Then, K is a convex set of which the straight lines x sin d+y cos 6 
= F(0) are the supporting lines ; the zeros of all the denominators 
Bn(z) of the /-fraction (1.1) are in K; the approximants of the /-frac­
tion are uniformly bounded over any domain whose distance from K 
is positive. We shall let Ko denote the convex set determined in this 
way corresponding to the function Fo(0) defined above. 

By Theorem 1.2, the /-fraction converges if | z\ is sufficiently large. 
We may then conclude immediately by a theorem of Stieltjes [ô] 
that the following theorem is true. 

THEOREM 2.1. A bounded J-jtaction converges uniformly over every 
bounded closed region whose distance from the convex set Ko is positive. 
In particular, the J-fraction converges if \z\ >N, where N is the norm 
of the J-fr action. 

We note the following special cases. If the coefficients ap and bp 

are all real, then Fo(0) = YO(TT) = 0, so that Ko reduces to an interval 
of the real axis contained in the interval — N^x^ +N. If the ap are 
pure imaginary and the bp are real and positive, then the set Ko is 
contained in the left half-plane, x = R(z)^0. 

3. Bounds for the zeros of a polynomial. The preceding considera­
tions furnish a method for determining bounds for the zeros of a 
polynomial. Let P(z) be a polynomial of degree n, n>l, and let Q(z) 
be any polynomial of degree n — 1 such that there is a continued frac­
tion expansion of the form 

(3.1) 

P(z) a[ 
bi + z 

62 + z -

bn + Z 

where ap9^0y p = l, 2, 3, • • • , n—-1, and C5*0. This expansion can be 
easily obtained by applying the euclidean algorithm for the greatest 
common divisor to Q(z) and P(z). Let Ko be the convex set which is 
associated with this /-fraction in the manner indicated in §2. Then 
the zeros of P(z) are all contained in Ko. 

One may readily obtain a rectangle containing the set Ko. In fact, 
if we use the notation of §2, such a rectangle is given by 

y è F(0), x è F(TT/2), 

y è - F(TT), x è - F(3TT/2). 
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This rectangle is obtained by minimizing four real quadratic forms. 
By way of illustration, let P(z)=z*+(2+i)z2+(3+i)z+(2i+2), 

and take Q(z) =2z2+iz+2. Then, 

eoo = 2 
P(z) (3i/2)2 

W (2 + i/2) + z ~ (8W»t/3)« 
— t/6 + z 

2i/3 + z 
We require lower bounds •— F(0) for the quadratic form 

(2 sin 6 + (1/2) cos 6)x\ - (1/6) cos 6x1 + (2/3) cos 6x1 

— 3 cos 6xix2 — (25/2/3) cos 6x2Xzy 

under the condition ffi2+#22+tf32==l, and for 0 = 0, TT/2, TT, 37r/2. 
Easily determined lower bounds are given by 

7(0) = 19/6, F(TT/2) = 0, F(TT) = 11/3, F(3TT/2) = 2. 

Therefore, the zeros of P(z) are contained in the rectangle 

y ^ 19/6, x ^ 0, 

y à - H / 3 , ^ - 2 . 

The zeros of P(z) are actually equal to 

- 1 - 71'»* - 1 + 71'2* 
— 1 —• i, ? • 

2 2 
The size of the rectangle depends upon the choice of the polyno­

mial Q(z). In fact, it is easy to show that the zeros of Q(z) also lie in 
the convex set JK"o. Furthermore, the computational difficulties are 
less for some choices of Q(z) than they are for other choices. Let 

P(z) » z« + (px + iqi)z"-1 + (f% + iq2)z"~2 + • • • + (pn + iqn). 

Then, if 

Q(z) = piZn-1 + iq2z
n~2 + pzz

n~z + iq&n~* + • • • , 

the computation involved in obtaining the /-fraction expansion for 
Q(z)/P(z) is especially simple. Moreover, from this expansion one can 
determine immediately the number of zeros of P(z) in each of the 
half-planes R(z) < 0 and R(z) > 0 . For details, we refer the reader to 
a recent paper of Frank [2]. 

4. The bounded reciprocal of a bounded /-matrix. We suppose 
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that (1.1) is bounded, that ap?*0, £ = 1, 2, 3, • • • , and consider the 
/ -matr ix 

(4.1) J + zI = 

h + z, — alf 0, 0, 0, 
— #1, bi + z, — 02, 0, 0, 

0, — a2, b2 + z, — 03, 0, 

If the norm of (1.1) is iV, and \z\ >N, then the matrix J-\-zI has a 
unique bounded reciprocal which is given by 

I J J2 

(J + rf)-1- Ï + - • 
Z Zl 2s 

This is a matrix whose elements are power series in 1/s, convergent 
for I s| >N. In particular, the element in the first row and first column 
is the power series expansion of the /-fraction, and its sum is the value 
of the /-fraction (Hellinger and Toeplitz [3]). 

We can now show that J+zI has a unique bounded reciprocal for 
any z not in the set K0 defined in §2. In fact, if we put Z=iYo(0)+C 
in (2.1), then, as we have seen, the /-fraction is a positive definite 
/-fraction in the variable "f. The corresponding /-matr ix is 

(4.2) 0 / + iYo(6) I + fJ. 

Inasmuch as the series 2 ( V | Ö ^ P | ) is divergent, the determinate 
case holds for the /-fraction [ l ] and consequently [7] the matrix 
(4.2) has a unique bounded reciprocal for 1(f) > 0 . We therefore con­
clude immediately that the J-matrix J+zI has a unique bounded recipro­
cal for any z not in the set Ko defined in §2. 

5. Functions represented by /-fractions. Every infinite subse­
quence of approximants of a positive definite /-fraction contains an 
infinite subsequence which converges for I(z) > 0 to a function which 
is analytic and has a negative imaginary part in this domain, and 
which has the form 

(5.1) ƒ(*)= f 
+oo d<t>{u) 

z — u 

where <t>{u) is bounded and nondecreasing. There are functions which 
are analytic and have negative imaginary parts for I(z) > 0 which are 
not limits of sequences of approximants of positive /-fractions. In 
fact, the most general function of this description has the form 
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(5.2) 

H. S. WALL 

r+°° 1 + zu 
1 d<j>(u) + a — bz 

• /_«, Z — U 
~ -L.00 , A 

[August 

/ •+ 0 0 / W 1 \ 
= I (—•—; + ) (1 + u*)d<j>(u) + a-bz, 

J -oo M + u2 z — u/ 
where a and b are real, b ^ 0 , and 0(«) is bounded and nondecreasing. 
This can be seen as follows. F. Riesz [5] and Herglotz [4] showed 
that a function ƒ (w) is analytic and has a positive real part for | w\ < 1 
if and only if it has the form 

•J 0 

2v git _|_ ^ 

da(t) + iö, 
^i< — w 

where a is real and <r(t) is bounded and nondecreasing. If we multiply 
this integral by — i and make the substitution 

1 + iz 
(5.3) w = ; 

1 — iz 
mapping the unit circle upon the upper half-plane, we obtain after 
simple transformations 

2* 1 - z tan (t/2) 

ƒ • d<r(t) + a. f o tan (t/2) + z 

This can be transformed into (5.2) if we put u = tan (t/2). 

We take this occasion to point out that there exists an identical 
continued fraction transformation of the integral (5.2). We have the 
following theorem. 

THEOREM 5.1.-4 necessary and sufficient condition f or a function to 
be analytic and have a negative imaginary part for I(z) >0is that it have 
a continued fraction expansion of the form 

z — r0 

z_r (1 - gi)gi(l + *2) 
(5.4 Tl (1 - g2)g3(l + z>) 

Z — T2 

— n — 

where c>0y0<gp<l, — oo Op_.i<+ co,£ = l ,2 ,3 , • • - , or a terminât* 



1946] BOUNDED /-FRACTIONS 693 

ing continued fraction expansion of this form in which the last gp which 
appears may be equal to unity. The continued fraction converges uni­
formly over every bounded closed region within the half-plane 7(z)>0, 
and is uniquely determined by the function expanded. 

To prove this, it is only necessary to make the substitution 

4:W 

(1 - w)2 

in the continued fraction (3.14) of [8], multiply the resulting con­
tinued fraction by — i, and then make the substitution (5.3) above. 
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