APPROXIMATE ISOMETRIES

D. G. BOURGIN

In a recent paper $[1]^1$ Hyers and Ulam formulated the problem of approximate isometries. Thus if E_1 and E_2 are metric spaces, a transformation T on E_1 to E_2 is an ϵ isometry if $|d_1(T(x), T(x')) - d(x, x')|$ $<\epsilon$, for all x, x' in E_1 . These authors analyzed the ϵ isometries defined on a complete abstract Euclidean space E and showed that if Tmaps E onto itself and $T(\theta) = \theta$, then there exists an isometry [2,p. 165], U, of E onto E such that $||T(x) - U(x)|| < 10\epsilon$. The analysis depends on the properties of the scalar product. In the present work we show, first, that similar results hold when $E_1 = E_2 = L_r(0, 1)$, $1 < r < \infty$, though, except of course for r = 2, a scalar product no longer exists. It is shown further that it is sufficient that E_2 belong to a restricted class of uniformly convex Banach spaces and that E_1 be a Banach space.

THEOREM 1. Let T(x) be an ϵ isometry of $L_r(0, 1)$, $1 < r < \infty$, into itself with $T(\theta) = \theta$. Then $U(x) = L_{n \to \infty} T(2^n x)/2^n$ exists for each x and U(x) is an isometric, linear transformation.

Our fundamental assumption is that

$$(1.01) \qquad \left| \left\| T(x) - T(x') \right\| - \left\| x - x' \right\| \right| < \epsilon, \qquad T(\theta) = \theta.$$

The following inequality is due to Clarkson [3, 4],

(1.02)
$$\|\alpha + \beta\|^{p} + \|\alpha - \beta\|^{p} \leq 2(\|\alpha\|^{q} + \|\beta\|^{q})^{p-1},$$

where here and later we understand that

$$p = \sup (r/(r-1)) \ge 2 \ge q = \inf (r, r/(r-1)).$$

Let

$$2\alpha = T(x), 2\beta = T(x) - T(2x).$$

Then

$$||T(x) - T(2x)/2||^{p}$$
(1.03)
$$\leq 2^{1-q(p-1)} (||T(x)||^{q} + ||T(x) - T(2x)||^{q})^{p-1} - ||T(2x)/2||^{p}$$

$$\leq (||x|| + \epsilon)^{p} - (||x|| - \epsilon/2)^{p}.$$

If $||x|| \leq \epsilon$ then the right-hand side of equation (1.03) is surely in-

Presented to the Society April 27, 1946; received by the editors January 26, 1946. ¹ Numbers in brackets refer to the Bibliography.

[.]

ferior to $(2\epsilon)^p$. For $0 \le z \le 1$, $r \ge 1$, the following inequalities are easy to establish,

(1.04)
$$(1+z)^r \leq 1+(2^r-1)z,$$

(1.05) $(1-z)^r \ge 1-rz.$

Hence for $||x|| > \epsilon$ the right-hand side of equation (1.03) is dominated by

$$\left(\frac{2^{p+1}+p-2}{2}\right)\epsilon ||x||^{p-1}.$$

Accordingly in both cases

$$||T(x) - T(2x)/2|| \le k ||x||^{1/q} + 2\epsilon$$

where

$$k = \left(\frac{\epsilon(2^{p+1} + p - 2)}{2}\right)^{1/p}.$$

Write

$$||T(2^nx)/2^n - T(x)|| \leq k_n ||x||^{1/q} + l_n \epsilon$$

and

(1.06)
$$\begin{aligned} \|T(2^{n+1}x)/2^{n+1} - T(x)\| \\ &\leq \|T(2^{n+1}x)/2^{n+1} - T(2x)/2\| + \|T(2x)/2 - T(x)\| \\ &\leq (2^{-1/p}k_n + k) \|x\|^{1/q} + (l_n/2 + 2)\epsilon. \end{aligned}$$

On setting the right-hand side of Equation (1.06) equal to $k_{n+1} ||x||^{1/\alpha} + l_{n+1}\epsilon$, we have the difference equations

$$k_{n+1} = 2^{-1/p}k_n + k, \ l_{n+1} = l_n/2 + 2.$$

The solutions of these equations are

$$k_n = k \sum_{j=0}^{n} 2^{-j/p} \leq k/1 - 2^{-1/p} = A,$$

$$l_n = 2 \sum_{j=0}^{n} 2^{-j} \leq 4.$$

Hence

(1.07)
$$||T(2^{n+m}x)/2^{n+m} - T(2^nx)/2^n|| \le A2^{-n/p}||x||^{1/q} + 4(2^{-n}\epsilon).$$

Since $L_r(0, 1)$ is complete we can define U(x) by

$$U(x) = L_{n \to \infty} T(2^n x)/2^n, \qquad U(\theta) = \theta.$$

Moreover in view of equations (1.01) and (1.07) we can establish directly that U(x) is an isometry (and is linear [2, p. 166]). We shall make frequent use of

(1.08)
$$||U(x) - T(x)|| \leq A ||x||^{1/q} + 4\epsilon.$$

THEOREM 2. If T is an ϵ isometry of $L_r(0, 1)$ on $L_r(0, 1)$ then U is an isometry of $L_r(0, 1)$ on $L_r(0, 1)$.

The proof given by Hyers and Ulam for their Theorem 3 is obviously valid here. A more general situation is covered by our Theorem 5.

THEOREM 3. If T(x) is an ϵ isometry of $L_r(0, 1)$ on $L_r(0, 1)$ then $||T(x) - U(x)|| \leq 12\epsilon$.

We shall tacitly follow the convention that $z \in L_r(0, 1)$ has as its representative the function $z_r(s)$. Choose $x \neq \theta$ arbitrarily and write

$$U(x) = y_1, \quad T(x) = y_2.$$

We first assume that y_1 and y_2 are not collinear with θ . Then $||y_2 - vy_1||$ has a unique, positive minimum for some value of v, say u. For instance, this is a consequence of the Alaoglu-Birkhoff lemma [5, p. 299] that in a uniformly convex Banach space a closed convex set, here $\{y_2 - vy_1 | |v| < \infty\}$, contains an element of least norm (reflexivity would be sufficient for this) and this element is unique. Let

(3.01)
$$y_0 = (y_2 - uy_1)/||y_2 - uy_1||$$

Then

$$(3.02) y_2 = uy_1 + ||y_2 - uy_1||y_0 = uy_1 + wy_0.$$

It is significant for our developments that $w \ge 0$. In view of Theorem (2) a unique element, x_0 , is defined by $U^{-1}y_0$.

Since inf $||y_0 - hy_1|| = 1$ there is a linear functional [2, p. 57] of unit norm, f_0 , such that $f_0(y_0) = ||y_0|| = 1$ and $f_0(y_1) = 0$. Let E_0 $= \{y | f_0(y) = 0\}$. Since L_r^* is strictly convex it is easy to show that f_0 is unique and an explicit representation is

(3.03)
$$f_0(y) = \int_0^1 |y_0(s)|^{r-1} \operatorname{sign} y_0(s)y(s)ds.$$

An obvious argument shows every element in E is uniquely expressible as a sum of a multiple of y_0 and an element in E_0 . Moreover, if

 $y \in E_0$, then

(3.04)
$$||y_0 + y|| \ge |f_0(y_0 + y)| = 1.$$

We have from Equation (1.08)

(3.05)'
$$\|T(x) - U(x)\| = \|(u - 1)y_1 + wy_0\| \le A \|x\|^{1/q} + 4\epsilon = A \|y_1\|^{1/q} + 4\epsilon.$$

Moreover

$$(3.06) \qquad | ||vy_1 + wy_0|| - ||y_1|| | = | ||(Tx)|| - ||x|| | < \epsilon.$$

We write

$$(3.07) T(2^n x_0) = 2^n x_0 + l_n y_0 + Y_n$$

where $Y_n \in E_0$. Accordingly

$$(3.08) \quad \epsilon > | || 2^n y_0 + l_n y_0 + Y_n - u y_1 - w y_0 || - || 2^n y_0 - y_1 || |.$$

Also

(3.09)
$$|||2^n y_0 + l_n y_0 + Y_n|| - 2^n| < \epsilon,$$

(3.10) $||l_n y_0 + Y_n|| \le A 2^{n/q} + 4\epsilon.$

From equations (3.02), (3.09), and (3.10) it is manifest that

$$- (A2^{n/q} + 4\epsilon) \leq l_n \leq \epsilon, ||Y_n|| \leq 2(A2^{n/q} + 4\epsilon).$$

Actually it is sufficient for our purpose that $||Y_n||/2^n$, $l_n/2^n$ go to 0 as $n \to \infty$.

We remark that

(3.11)
$$||2^n y_0 - y_1|| = 2^n + o(1).$$

Indeed equation (3.02) entails

$$\frac{d}{dt} ||y_0 - ty_1|| |_{t=0} = - \int_0^1 (|y_0(s)|^{r-1} \operatorname{sign} y_0(s)) y_1(s) ds = 0.$$

Hence we have from equations (3.08), (3.09), and (3.11)

(3.12)
$$\begin{aligned} \|(2^n+l_n)y_0+Y_n\|^r-\|(2^n+l_n)y_0+Y_n-uy_1-wy_0\|^r \\ &\leq (2r\epsilon)2^{n(r-1)}+o(2^{n(r-1)}). \end{aligned}$$

The crucial step in our demonstration is the justification of the assertion that the left-hand side of equation 3.12 is

$$2^{n(r-1)}(rw) + o(2^{n(r-1)}).$$

Write $t=2^{-n}$, $l_t=l_n/2^n$, $Y_t=Y_n/2^n$. Then l_t and $||Y_t||$ go to 0 with t.

Write V = tu, W = tw and α and β for real numbers between 0 and V and 0 and W respectively. Write also $L_t = l_t - \beta$ and

$$\psi(s, t) = y_0(s)(1 + L_t) + Y_t(s) - \alpha y_1(s),$$

$$f_t(y) = \int_0^1 |\psi(s, t)|^{r-1} \operatorname{sign} \psi(s, t) y(s) ds.$$

Denote the rectangle $|u| \leq A$, $w \leq B$ by Q. For each choice of t the theorem of the mean guarantees that α and β exist such that the left-hand side of equation (3.12) has the value

$$(3.13) \quad -\left(V\frac{\partial}{\partial\alpha}+W\frac{\partial}{\partial\beta}\right)\left\|(1+L_t)y_0+Y_t-\alpha y_1\right\|^r=r(Vf_t(y_1)+Wf_t(y_0)).$$

For arbitrary positive δ and all sufficiently small t values

$$\sup\left(\left|l_{t}\right|+tB,\left|\left|Y_{t}\right|\right|,t\left|\left|Ay_{1}\right|\right|\right)<\delta$$

Let

$$S = \{s \mid y_0(s) \leq |L_t y_0(s) + Y_t(s) - \alpha y_0(s)|\}$$

and write R for the complement of S in $0 \leq s \leq 1$. Then

.

$$|f_{t}(y_{1})| \leq \left| \int_{R} |\psi(s,t)|^{r-1} \operatorname{sign} y_{0}(s)y_{1}(s)ds \right|$$
$$+ \left| \int_{S} |\psi(s,t)|^{r-1} \operatorname{sign} \psi(s,t)y_{1}(s)ds \right|.$$

It may be verified that

$$\begin{split} \int_{S} |\psi(s,t)|^{r-1} |y_{1}(s)| \, ds &\leq 2^{r-1} \int_{S} |L_{t}y_{0}(s) + Y_{t}(s) - \alpha y_{1}(s)|^{r-1} |y_{1}(s)| \, ds \\ (3.14) &\leq 2^{r-1} (3\delta)^{r/(r-1)} ||y_{1}||. \\ \left| \int_{R} |\psi(s,t)|^{r-1} \operatorname{sign} y_{0}(s)y_{1}(s) \, ds \right| &\leq \left| \int_{0}^{1} |\psi(s,t)|^{r-1} \operatorname{sign} y_{0}(s)y_{1}(s) \, ds \right| \\ &+ \left| \int_{S} |\psi(s,t)|^{r-1} \operatorname{sign} y_{0}(s)y_{1}(s) \, ds \right|. \end{split}$$

The first integral on the right-hand side can be written

$$\int_{0}^{1} (|\psi(s,t)|^{r-1} - |y_0(s)|^{r-1}) \operatorname{sign} y_0(s)y_1(s)ds + \int_{0}^{1} |y_0(s)|^{r-1} \operatorname{sign} y_0(s)y_1(s)ds.$$

Since $y_1 \in E_0$ the last integral vanishes, and we may dominate by

$$\int_{R} (|\psi(s,t)|^{r-1} - |y_0(s)|^{r-1})|y_1(s)| ds + \int_{S} (|\psi(s,t)|^{r-1} - |y_0(s)|^{r-1})|y_1(s)| ds.$$

The first integral may be written

$$\int_{R} \left| \left| 1 + \frac{L_{t}y_{0}(s) + Y_{t}(s) - \alpha y_{1}(s)}{y_{0}(s)} \right|^{r-1} - 1 \right| \left| y_{0}(s) \right|^{r-1} \left| y_{1}(s) \right| ds.$$

For $|z| \leq 1$ and positive k we have

$$(1 + |z|)^{k} \leq 1 + k|z|, 1 + (2^{k} - 1)|z|, (1 - |z|)^{k} \geq 1 - |z|, 1 - k|z|,$$

according as k is less than or greater than 1. Hence for some positive K the last integral written is bounded by

$$\begin{split} K \int_{R} |L_{t} y_{0}(s) + Y_{t}(s) - \alpha y_{1}(s)| |y_{0}(s)|^{r-2} |y_{1}(s)| ds \\ & \geq K ||L_{t} y_{0} + Y_{t} - \alpha y_{1}||^{r/(r-1)} ||y_{0}||^{r(r-2)/(r-1)} ||y_{1}|| \\ & \leq K (3\delta)^{r/(r-1)} ||y_{1}||. \end{split}$$

Since all the integrals over S are covered by equation (3.14),

 $(3.15) |f_t(y_1)| \leq C \delta^{r/(r-1)},$

uniformly in $(u, w) \in Q$ for all sufficiently small t. Hence

$$utf_t(y_1) = o(t).$$

Now

(3.16)
$$f_{t}(y_{0}) = \int_{R} + \int_{S} (|\psi(s, t)|^{r-1} - |y_{0}(s)|^{r-1}) \operatorname{sign} \psi(s, t) ds + \int_{0}^{1} |y_{0}(s)|^{r-1} \operatorname{sign} \psi(s, t) y_{0}(s) ds.$$

Each of the first two integrals on the right-hand side is readily shown to be inferior in absolute value to $C_1 \delta^{r/r-1}$. The last integral on the right-hand side may be written

$$||y_0||^r + \int_{s} |y_0(s)|^{r-1}(\operatorname{sign} \psi(s, t) - \operatorname{sign} y_0(s))y_0(s)ds.$$

Evidently the integral over S is inferior in absolute value to

$$2\int_{S} |\psi(s, t)|^{r-1} |y_{0}(s)| ds \leq 2(3\delta)^{r/(r-1)}.$$

1946]

Therefore

$$f_i(y_0) = 1 + \rho, \qquad |\rho| \leq C_2 \delta^{r/(r-1)},$$

for all sufficiently small t values uniformly for $(u, w) \in Q$. Thus

(3.17)
$$wtf_t(y_0) = wt + o(t).$$

Hence the right-hand side of equation (3.13) is rwt+o(t). Accordingly, equation (3.12) may be written

$$2^{n(r-1)}rw + o(2^{n(r-1)}) \leq 2^{n(r-1)}2r\epsilon + o(2^{n(r-1)}).$$

2e.

Therefore

(3.18)

$$w \leq$$

We have then

$$||y_2 - y_1|| \leq |u - 1| ||y_1|| + 2\epsilon.$$

From equations (3.06) and (3.18) we infer

 $(3.19) \qquad \qquad ||u|-1|||y_1|| \leq 3\epsilon.$

Hence if $u \ge 0$ we have

$$(3.20) ||y_2 - y_1|| \leq 5\epsilon.$$

The case that y_1 , y_2 and θ are collinear offers no exception. Here $y_2 = uy_1$ and, for $u \ge 0$, equation (3.06) surely implies equation (3.20).

Suppose now that u < 0. It may be shown from equations (3.05), (3.06), and (3.18) that the maximum value of $||y_1||$, denoted by *B*, consistent with u < 0 is given by

$$(3.21) 2B = AB^{1/q} + 9\epsilon.$$

In view of equations (1.08) and (3.19) it follows that in all cases

$$(3.22) ||y_2 - y_1|| \leq \sup (5\epsilon, 2B - 5\epsilon).$$

Evidently B depends on p and ϵ alone and goes to 0 with ϵ . Since $1 < q \leq 2$ it can be verified that for $A + 9\epsilon < 2$, for instance,

$$B \leq ((A + (A^2 + 72\epsilon)^{1/2})/4)^q.$$

Instead of continuing with the determination of explicit bounds for B from equation (3.21) it seems preferable to present an alternative argument which has the merit of yielding a convenient bound directly. The idea behind this argument is borrowed from [1] and consists of the observation that for all sufficiently large multiples of x, say lx, T(lx) has a positive y_1 component. This is of course obvious,

[August

since we need merely satisfy $l||x|| \ge B$. Accordingly if u < 0, there is an integer *m* such that in the general case

(3.23)
$$T(2^m x) = - u_2 2^m y_1 + w_2 z_0,$$
$$T(2^{m+1} x) = u_1 2^{m+1} y_1 + w_1 Z_0,$$

where u_1 and u_2 are *non-negative* and z_0 and Z_0 have unit norm and are determined in the same way as y_0 . The argument leading to equation (3.18) shows that $0 \le w_j \le 2\epsilon$, j=1, 2. The possibility that either (or both) of $T(2^m x)$ and $T(2^{m+1}x)$ is collinear with y_1 and θ is formally included by taking the corresponding w as 0. We write z for $2^m y_1$. Thus $||y_1|| \le ||z||$. Then, in view of equations (1.01) and (3.23),

$$|||(2u_1 + u_2)z - w_2z_0 + w_1Z_0|| - ||z||| < \epsilon$$

and

$$(3.24) | 2u_1 + u_2 - 1 | ||z|| \leq 5\epsilon$$

Similarly the analogues of equation (3.19) are

$$(3.25) |2u_1-2|||z|| \leq 3\epsilon,$$

$$(3.26) |u_2-1|||z|| \leq 3\epsilon.$$

There are several cases to consider, depending on whether (u_1, u_2) and $2u_1+u_2-1$ are larger or smaller than 1. The largest value of ||z|| is admitted in the event sup $(u_1, u_2) \leq 1 \leq 2u_1+u_2 \leq 3$. On combining the inequalities in (3.24), (3.25), and (3.26) we obtain in this case

$$\|z\| \leq 11\epsilon/2.$$

Since $||y_1|| \le ||z||$ we infer for u < 0 and then, by equation 3.20, for all u,

$$(3.27) ||T(x) - U(x)|| \leq 2||y_1|| + \epsilon \leq 12\epsilon.$$

The developments just concluded motivate the generalization presented below. Elements in the Banach spaces E_1 and E_2 are denoted by x and by y or z respectively. Our restrictions bear on E_2 alone. Henceforth we assume E_2 is a uniformly convex Banach space [3], that is to say $||z_1-z_2|| \ge \gamma \sup(||z_1||, ||z_2||), \gamma > 0$, implies $||z_1+z_2|| \le 2 (1-\delta(\gamma)) \sup(||z_1||, ||z_2||)$, where $\delta(\gamma)$ is strictly monotone with $\delta(0) = 0$, $\delta(2) = 1$. We define γ' for all positive δ as sup $\{\gamma \mid \delta(\gamma) \le \inf(1, \delta)\}$ and write $\gamma' = \psi(\delta)$. We drop the primes in the sequel. We require that E_2 satisfy the following restrictions, also,

(A)
$$\sum_{n=1}^{\infty} \psi(2^{-n}C) < \infty$$

for every positive C,

(B)
$$L_{\lambda \to 0}, ||z|| \to 0 (||y_0 + z - \lambda y_1|| - ||y_0 + z||)/\lambda = 0,$$

where $||y_0|| = 1$ and z and y_1 lie in the linear space $\{y | f_0(y) = 0, f_0(y_0) = 1, ||f_0|| = 1\}$. (It is easy to verify that these conditions are satisfied by $L_r(0, 1), 1 < r < \infty$.)

THEOREM 4. Let T(x) be an ϵ isometry of E_1 into E_2 with $T(\theta_1) = \theta_2$. Then $U(x) = L_{n \to \infty} T(2^n x)/2^n$ exists for each x and U(x) is an isometric (linear) transformation.

Evidently sup (||T(2x) - T(x)||, ||T(x)||) can be written $||x|| + \rho$ where $|\rho| < \epsilon$. Then

$$\left\| \left(T(2x) - T(x) \right) - T(x) \right\| \geq \gamma(\left\| x \right\| + \rho)$$

implies

$$||x|| - \epsilon/2 \leq ||T(2x)/2|| \leq (1 - \delta(\gamma))(||x|| + \rho).$$

Hence

$$\delta(\gamma) \leq 3\epsilon/2 \|x\|.$$

Let
$$\delta_n = 3\epsilon/2^{m+1} ||x||$$
. Then, since $|\rho| < \epsilon$,
 $||T(2^{m+1}x) - 2T(2^mx)|| \le \gamma_m(2^m ||x|| + \epsilon)$.

Evidently γ_m is a monotone nonincreasing function on the positive real axis with $L_{\|x\| \to \infty} \gamma_m = 0$. In view of (A)

(4.01)
$$\sum_{j=1}^{\infty} 2^{-j} ||T(2^{j}x) - 2T(2^{j-1}x)|| \leq (||x|| + \epsilon) \sum_{j=1}^{\infty} \gamma_{j} = k(||x||)(||x|| + \epsilon).$$

It is important to observe that k(||x||) is a monotone nonincreasing function of ||x|| and

(4.02)
$$L_{||x|| \to \infty} k(||x||) = 0.$$

Since E_2 is complete, the demonstrated convergence of the left-hand side of equation (4.01) ensures the existence of U(x) given by

$$U(x) = L_{n \to \infty} T(2^n x) / 2^n x$$

It is easy to see that U is an isometry on E_1 to E_2 and that

(4.03)
$$||T(x) - U(x)|| \leq k(||x||)(||x|| + \epsilon).$$

THEOREM 5. If T is onto E then U is onto E.

The simple demonstration below covers more general E_2 spaces

[August

than those of our hypotheses. Let E'_2 be the range of U. Then E'_2 is closed in E_2 [2, p. 145]. Assume the assertion of the theorem invalid, that is to say E'_2 is a proper subspace of E_2 . Evidently for some positive s_0 , $s \ge s_0$ implies $k(s)(s+\epsilon) \le s+\epsilon-2$. It is well known [2, p. 83] that for some z_0 of unit norm, $||z_0-z|| \ge 1-(s_0+\epsilon)^{-1}$ for all z in E'_2 . Let x satisfy $T(x) = (s_0+\epsilon)z_0$. Then $s_0 \le ||x|| \le s_0+2\epsilon$ and

$$(5.01) ||T(x) - U(x)|| = (s_0 + \epsilon)||z_0 - U(x)/(s_0 + \epsilon)|| \ge s_0 + \epsilon - 1.$$

On the other hand, using equation (4.03),

(5.02)
$$||T(x) - U(x)|| \leq s_0 + \epsilon - 2.$$

Since equations (5.01) and (5.02) are incompatible, our theorem is established. Hence incidentally E_1 and E_2 are equivalent [2, p. 180].

THEOREM 6 If T defines an ϵ isometry of E_1 onto E_2 with $T(\theta_1) = \theta_2$ then $||T(x) - U(x)|| \leq 12\epsilon$.

We continue the notation introduced in the course of the proof of Theorem 3. The results through equation (3.09) hold subject to the trivial modification of replacing $A||y_1||^{1/q}+4\epsilon$ by $k(||y_1||)(||y_1||+\epsilon)$. Moreover the analogues of equations (3.09) and (3.10) establish

$$-k(2^n)(2^n+\epsilon) \leq l_n \leq \epsilon, ||Y_n|| \leq 2k(2^n)(2^n+\epsilon).$$

In view of equation (4.02) we can assert $||Y_n||/(2^n - |l_n|)$ and $l_n/2^n$ go to 0 with *n*. Then by (B)

(6.01)
$$||T(2^nx_0)|| - ||T(2^nx_0) - T(x)|| \le ||2^ny_0|| + \epsilon - ||2^ny_0 - y_1|| + \epsilon \le 2\epsilon + o(1).$$

The left-hand side of equation (6.01), for large n, is

(6.02)
$$\left\{ (2^{n} + l_{n}) \left(\left\| y_{0} + \frac{Y_{n}}{2^{n} + l_{n}} \right\| - \left\| y_{0} + \frac{Y_{n} - uy_{1}}{2^{n} + l_{n} - w} \right\| \right\} + \left\{ w \left\| y_{0} + \frac{Y_{n} - uy_{1}}{2^{n} + l_{n} - w} \right\} \right\}$$

With $z = Y_n/(2^n + l_n - w)$, $\lambda = u/(2^n + l_n - w)$ it follows readily from (B) that the first brace of terms goes to 0 with *n* and hence $w + o(1) \le 2\epsilon + o(1)$ or

 $w \leq 2\epsilon$.

For some positive B, $k(B)(B+\epsilon)+2\epsilon \leq B$ in view of equation (4.02).

1946]

Then a simple argument using equations (4.03) and (3.18) shows u > 0 for $||y_1|| > B$. The remainder of the proof follows the pattern of the proof of Theorem 3 in detail and is therefore omitted. It will be noted that the possibility that the functional f_0 (cf. Theorem 3) may not be unique does not disturb the proof.

REMARK. Since U is linear T is a 36 ϵ linear transformation [6]. Moreover U(x) is the unique distributive operation satisfying $\overline{L}_{||x|| \to \infty} ||T(x) - V(x)/||x|| < \infty$.

BIBLIOGRAPHY

1. D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 288-292.

2. S. Banach, Théorie des opérations linéaires, 1932.

3. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 396-414.

4. R. P. Boas, Some uniformly convex spaces, Bull. Amer. Math. Soc. vol. 46 (1940) pp. 304-311.

5. L. Alaoglu and G. Birkhoff, General ergodic theorems, Ann. of Math. vol. 41 (1940) pp. 293-309.

6. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. vol. 27 (1941) pp. 222-224.

UNIVERSITY OF ILLINOIS