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1. Introduction. The following theorem, which plays a role in the 
classification of Lie groups, was first proved by H. Weyl [l, 2 ] : 1 

THEOREM A. If G is a real compact connected semi-simple Lie group > 
then any connected group G' locally isomorphic with G is also compact. 

I t is well known and easily seen by considering the simply con
nected covering group that Theorem A can also be formulated as 
follows : 

THEOREM B. The fundamental group of a real connected compact 
semi-simple Lie group is finite. 

In this note we present two proofs of Theorems A and B ; one proof 
uses differential forms, the other, which is somewhat more elemen
tary, is based on differential geometry.2 

Let then G be a real connected compact Lie group and assume that 
the fundamental group of G is infinite. We have to prove that G is 
not semi-simple. We note that for compact groups "semi-simple" 
means that the center of G is finite [2, p. 282]. 

2. Proof by differential forms. Since for group manifolds the funda
mental group and the one-dimensional homology group coincide, our 
assumption means that the one-dimensional Betti number is not 0. 
Let Z denote a 1-cycle, which is not homologous to 0 (with rational 
or real coefficients). By de Rhams theorem there exists an exact dif
ferential form co of degree one such that fzoo^O. I t is well known from 
Cartan's investigations that we can replace co by a form co which is 
invariant under the right and left translations of G. We denote by 
a - 6 resp. 6 • b the transform of the differential form 0 under left resp. 
right translation so that a-6{x, dx)~Q{a,'X, a-dx)> where a-x means 
the group product of the elements a and x of G and a • dx means the 
image of the vector dx under the left translation by a, and similarly 
for 0-b. With Haar measure on G we form the expression co =ƒƒ(?#-co 
• b dadb ; this is an invariant form on G of degree 1. We consider now 
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ƒ.-ƒƒ.ƒ. a-o)'b dadb. 

By the formula for transformation of integrals we have fza-co-b 
— Ja.zwby where a-Z is the image of Z under left translation by a. 
But a-Z is homotopic to Z since a can be connected with the unit ele
ment e by a continuous curve. Therefore /z#-co-&==/a.zco-ô==/zco-ô, 
and by the same reasoning on b we find /za-co-&=/zco, and therefore 
finally 

J co = I I I co dadb = «• dad& = I co ?£ 0. 

# J J oJz Jz J JQ JZ 

The form co is in particular invariant under the inner automor
phisms a~l*X'a of G. Considering co at the unit element e we have 
then a nonzero linear function on the tangent space at e which is in
variant under the linear transformations of the adjoint group. Since 
G is compact we can introduce in the tangent space at e an inner 
product which is invariant under the adjoint group. In a space with 
an inner product a linear function can be identified with a vector 
and so cô gives us a vector at e invariant under the adjoint group. (If 
we write û{e> dx) *=]T/2*ci#» and assume that the adjoint group is 
represented by orthogonal matrices, this is simply the vector with 
components a».) But then the one-parameter subgroup in direction 
of this vector is invariant under the adjoint group also, and lies there
fore in the center of G, which shows tha t G is not semi-simple. 

3. Proof by differential geometry. The second proof rests on the 
consideration of geodesies. We assume again that the fundamental 
group of G is infinite. We introduce in G an invariant differential 
geometry; this is possible since G is compact; "invariant" means that 
the right and left translations are isometries. I t is well known that 
the geodesies going through e are the one-parameter subgroups. 

Let G be the simply connected covering group of G ; we introduce 
the "covering" differential geometry on S by requiring that the local 
isomorphism between G and G be an isometry. This differential ge
ometry will also be invariant. Because of the assumption on the fun
damental group, G is not compact. 

As covering space of a compact space, G is a "complete" Rie-
mannian space; any two points in it can be connected by a shortest 
geodesic, that is, by one which realizes the absolute minimum of curve 
length between the two points (see [3, 4, 5]). In G there exist there
fore arbitrarily long geodesic segments which are the shortest con-
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nections of their end points. By moving the midpoint of each such 
segment to ë (the unit element of G) by means of a left translation, 
and by considering the limit of a properly chosen sequence we can 
find a geodesic y through ê, which is a "straight line," that is, which 
realizes the shortest distance in G between any two of its points. We 
shall prove that 7 belongs to the center of G. 

Consider the image 7 = ^(7) in G of 7 under the covering mapping 
c : G~->G. The group 7 may or may not be closed ; the closure of 7 is a 
connected compact Abelian Lie group, therefore a torus group T of 
a certain dimension. We introduce arclength s (— <x> <s< + *>) on y, 
and write 7(5) for the point on 7 with parameter value s; we can 
assume 7(0) ==ê. 

We determine now a sequence sn of values of s, such that sn—>+ 00, 
and c(y(sn))—>e. This is possible since T is compact. From a certain 
n on we can find points ën in G such that (1) c(ën)=e and (2) 
d(y(sn)y ën) =

sd(c(y(sn))1 e) (where we denote by d the distance in G 
and in G) ; this is possible because the covering mapping c is a local 
isometry. I t could happen that y(sn)=ën. The points ën are in the 
center of G, as (1) shows. 

Now let a be any element of G, and consider the transform 
3 = a~ 1 '7-a of 7 ; transformation by a being an isometry the parame
ter 5 on 7 can also be used as arclength on ô. Suppose now that ö is 
different from 7 ; then in particular the tangent vectors to 7 and ö 
at ë must determine an angle different from zero. Let b+ denote a 
point with positive s-value on <5, and b~ a point with negative 5-value 
on 7. It is well known that the triangle inequality holds for ô+, b~, 
and ê, that is, d(b+, b~~) <d(b+, ë)+d(b~, ë), provided b+ and b~ are 
sufficiently close to ë (see [ó]). We choose b+ and b~ accordingly; let 
d(b+t ë}+d(b~, ë)—d(b+, b~) = rj; we have then rj>0. 

We determine n such that d(y($n), ën)<rj/S; the inequality 
d(ö(sn), ën)<rj/3 follows then from the fact that the isometrical 
transformation by the element a transforms y(sn) into ô(sn), but has 
ën as fixed point, since ën belongs to the center of G. We consider now 
the following broken path f : from b~ to b+ on the shortest geodesic 
joining those two points, from b+ to ô(sn) on S, from ô(sn) to ën on 
the shortest geodesic, and from ën to y(sn) on the shortest geodesic. 
I t is clear that the length of f is less than the distance between b~ 
and y(sn) as measured on 7—the difference being at least rj/S. But 
by construction 7 realizes the shortest distance between any two of 
its points. 

Therefore ö cannot be different from 7. But a being an arbitrary 
element of G this means that 7 is in the center of G ; it follows that 
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the torus T, the closure of 7, is in the center of G, and G is shown not 
to be semi-simple, which finishes the proof. 
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