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OF ORDER 16 

R. D. SCHAFER 

Let S be a Cayley-Dickson division algebra over an arbitrary field 
% with principal equation 

(1) x2 - t(x)x + n(x) = 0 

and involution 

(2) S: x<r* xS = t(x) - x. 

We are concerned with division algebras 21 of order 16 over % defined 
in the following way: let Ê0 be a division algebra (of order 8) over % 
with the same elements as S but with multiplication denoted by xoy; 
further let 9t = E+^S, multiplication1 in 21 being defined by 

(3) cz = (a + vb){x + vy) = (ax + yobS) + v(aS-y + xb) 

for a, bt x y, in S. 
In the original form of this paper, the author considered the prob­

lem of equivalence in the class of algebras 2Ï == fë+^fë with multiplica­
tion defined by 

(4) cz = (a + vb)(x + vy) = (ax + g-ybS) + v(aS-y + xb) 

for a, bf Xy y in S where g is a fixed element of 6, g(£%. The author 
had shown in [5] that 21 is a division algebra in case g is chosen with 
n(g) not a square in Ç; in particular, such a choice of g can be made 
when % is the field R of rational numbers. R. H. Bruck, the referee 
of the paper in its original form, suggested a study of the wider class 
of algebras defined by (3). Theorems 1 and 2 are generalizations of 
the result in [5] and are due2 to R. H. Bruck. By their use the class 
of algebras studied here has been considerably enlarged.8 

In §2 we shall determine conditions for the equivalence of two alge-

Presented to the Society, April 27,1946; received by the editors February 26,1946, 
and, in revised form, May 29, 1946. 

1 This modification of the Cayley-Dickson process was originally presented by 
R. H. Bruck in [2], Theorem 16C, to obtain non-alternative division algebras of 
orders 4 and 8. Numbers in brackers refer to the references cited at the end of the 
paper. 

2 Theorem 2 was communicated to the author by Bruck, complete except for the 
proof of the equivalence of (S* and (£, a fact which Bruck conjectured. 

3 See the comment following the corollary to Theorem 4. 
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bras 21, 2t* of this class. These conditions lead directly to a determina­
tion of the automorphisms of 21. 

1. A class of division algebras of order 16. An algebra O is called 
a quaternion algebra if O = (1, u2, u3i u±)i U\ — UZU<L, u^ — Uz+a, W32=j3, 
^2^3 = ^3(1—^2), where a and j8?^0 are in g, — 4ce7^1. An algebra (S 
is called a Cayley-Dickson algebra if S = 0 + W B O , with elements 
x =p+u6q, where p, q are quaternions and multiplication is defined by 
(pi+u^) (P2+U&2) = (£ip2+Y22 • qiS) +ub(p1S'q2+p2qi) where u£ = 7 
T^O in % and S is the involution (2) of Q . 

Among the well known properties of (5 which we shall use are that 
S is an alternative algebra (see [4]), that (£ is central simple, that (1) 
holds for x in (£, where 

(5) x + xS = t(x), x(xS) = (xS)x = n{x) 

for the involution (2) of S. The norm form n{x) permits composi­
tion—that is, n{xy) =n(x)n(y) for x, y in (S. 

THEOREM 1. Let S be a Cayley-Dickson division algebra over ft with 
involution S. Let 2ï = fë+tffë have multiplication defined by (3), where 
So is chosen so that 

(6) n(xoy) = \n{x)n(y), X ^ 0 in ft, 

for all x, y in S. If X is not a square in ft, then 21 is a division algebra 
over ft. 

A necessary and sufficient condition that 2Ï be a division algebra 
is that 

(7) ax + yobS = 0, aS- y + xb = 0 (a, b, x, y in S) 

imply either c = 0 or z = 0. If we assume on the contrary that (7) hold 
for nonzero c, z it follows that a, b, x, y are all nonzero. Use of (5) 
then shows (7) essentially equivalent to yobS — a[(aS-y)bS]/n(b). 
Taking norms, we get 

(8) n(yobS) = [n(a)/n(b)]2n(y)n(bS). 

If X in (6) is not a square in ft, then (8) cannot be satisfied for any 
a, by y in S, and 2Ï is a division algebra over ft. 

In order to complete the proof of Theorem 2 we require two simple 
lemmas concerning Cayley-Dickson algebras. 

LEMMA 1. Let (5 and (£* be Cayley-Dickson algebras with respective 
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unity elements 1 and e and principal equations x2 — t{x)x+n{x)l —Oand 

(9) x* x — t*{x)x + n*(x)e = 0. 

If 6 and ®* are equivalent, the equivalence being given by x<r*xP, x in (£*, 
xP in Ê, then 

(10) S*P = PS 

where S* is /Ae involution 

(11) S*: B<-> #S* = t*{x)e — a; 

<?ƒ (S* and 5 is /&£ involution (2) #ƒ (£. 

For (9) implies that (x * x)P -t*{x)xP+n*{x)eP = {xP)2 -t*{x)xP 
+n*(x)l *=0 since eP = l. But (xP)2-t(xP)xP+n(xP)l = 0. Hence 

(12) **(«) = *(*P), »*(*) = »(*P). 

But then (xS*)P= [t*(x)e-x]P = t*(x)l-xP = t(xP)-xP = (xP)Sfor 
all # in (£*, or S*P = PS. 

LEMMA 2. Le/ © awd S* be Cayley-Dickson division algebras over § 
with norm f unctions n{x) and n*{x). If 

(13) n{x* y) = n{x)n{y), x, y in (£, 

then 

(14) »*(*) = »(*). 

We resort to the matrix representation of quadratic forms, regard­
ing x as a one-rowed matrix, so that the matrix product xAx' = n{x), 
where A is an 8 X8 matrix with elements in g (' denoting transpose). 
Let Ry, Ry* be the right multiplications defined by xRy = xy, 
xR* — x *y. Then n(x *y)=n(xy) or xR*ARy*'x' =xRyARyx', from 
which it follows that Ry*AR*' — RyARy is a skew-symmetric matrix, 
and Rf(A +A')Ry*'~Ry(A +A')RJ. Taking determinants, and not­
ing that | A +A ' | T^O since Ê is a division algebra, we obtain 
\Rf\*=\R*\* or [«*(y)]8=[»(y)]8 . Thus n*{y)=en{y), e8 = l. Take 
y = l. Then e = l and (14) follows. 

THEOREM 2. Le/ S be a Cayley-Dickson division algebra over % with 
unity element 1, and So be a division algebra with the same elements as 
£ and with multiplication xoy. Then (6) holds if and only if, first, S0 is 
isotopic to S {that is, there exist nonsingular linear transformations 
U, V, Won S such that 

(IS) xoy = {xU-yV)W 
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for #, y in £) and, second,* 

(16) n(xT) = n{x)n(\T), T = UfV, W. 

If 21 =(£+*>(£, multiplication defined by (3), (15), (16), and if 
n(lU)n(lV)n(lW) is not a square in %, then % is a division algebra 
over %. 

Define two nonsingular linear transformations H, J on £ in the 
following way: let xH = xol, xJ=loxf for x in (£. Then, if (6) holds, 
n{xH~lol) —n{x) =\n{xH~l) and 

(17) nixH-1) = n(x)/\. 

Also n{\oxHJ~x) =n(xH) =n(xol) =\n(x) =\n(xHJ~l) or 

(18) n(xEJ~l) = n{x). 

Let (£* be the isotope of (So defined by 

(19) x*y = [xo(yEJ~l)]E-\ 

Then 1 is a unity element for fë*. Moreover, n(x *y)=n [xoÇyHJ"1) ]/X 
— n(x)n(yHJ~l) ~n(x)n(y), or (13) holds. That is, n(x) is a quadratic 
form permitting composition with respect to the multiplication x * y 
of (£*; hence5 S* is a Cayley-Dickson algebra over % and w(#) is 
equivalent in % to the norm form n*(x) of (5*. (Actually n(x) is identi­
cal with n*(x) by (14), but that fact is immaterial at this point of 
the proof.) Since any two Cayley-Dickson algebras with equivalent 
norm forms are equivalent,6 it follows that (£*==(£ with 

(20) x*y = (xU-yU)U-1, 

for U a nonsingular linear transformation on (5. Moreover, (S0 is 
isotopic to (£. Let 

(21) V = JH^U, W = U~lH. 

Then (15) follows from (19), (20), (21). Also (16) holds, for n(xU) 
= n*(x)=n(x) by (12) and (14), while 1 Z7=l =rc(l U)\ also n\xV) 

4 Any nonsingular linear transformation T satisfying (16) is closely related to a 
norm-preserving transformation U. For set lT~t and U—TRr1» Then T= J7i?« and 
xT=xU-t, n(xT)=n(xU)n(t). Hence n(xU)=n(x). Conversely if T=URt where Ü7 
is norm-preserving, then T has property (16). 

5 See the principal theorem of [l, p. 161 ], for the relationship between quadratic 
forms permitting composition and the norm forms of certain alternative algebras. 

6 [3, p. 777]. The proof in Jacobson's paper is for g of characteristic not two. The 
author has verified the theorem for arbitrary g, but will not take the space to include 
a proof here. 
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= n(xJH-lU) = n(xJH~l) = n(x) by (18) while 1 7 = l = n ( l F ) , and 
n(xW)=n{xU~lH)=\n{xU-l)=\n(x) by (17) while n{lW)=\n{l) 
=X. 

Conversely, if multiplication in So is defined by (15) and (16), 
then (6) holds. For n(xoy) = n[(xU-yV)W] = n(xU-yV)n(lW) 
= n(xU)n{yV)n(lW)=\n{x)n{y) where \ = n(lU)n(lV)n(lW). By 
Theorem 1, a sufficient condition that 31 be a division algebra is 
that X be not a square in $. 

2. Equivalence in this class of algebras. The algebras of §1 are 
quite general, and are at the same time a concrete realization of the 
hypotheses in the theorems of this section. In order to show that these 
theorems, which are actually proved for a more general class of di­
vision algebras, apply to the algebras described in §1, we note that 
if S is a Cayley-Dickson division algebra over $, and 31= (S+z>S has 
multiplication defined by (3) and (6), X not a square in g, then, 
for any nonzero element y of Ê, the product yoyS is not in $. For if 
yoySÇïF, then {yoySY = n(yoyS) =\n(y)n(yS) =\[n{y)]2, and X is a 
square in %, a contradiction. 

THEOREM 3. Let 31 = £+z>(£, with multiplication defined by (3) where 
yoyS is not in % for nonzero y in S. Then an element z of 31 satisfies a 
quadratic equation with coefficients in % if and only if z is in Ê. 

For z2 = (x+vy)2 = (x2+yoyS) +v(xS-y+xy) =t(x)x — n(x) +yoyS 
+t(x)vy = t(x)z-n(x)+yoyS. If z2-T{z)z+N{z) = 0 for some T(z) 
and N(z) in gf, then t(x)z — n(x) +yoyS =T(z)z — N(z), or {t(x) 
-T(z)}z = n(x)-yoyS-N(z) in S. Either z is in S, or t(x)-T(z) 
= 0~n(x)—yoyS — N(z) and yoyS = n{x) — N(z) in %, contrary to hy­
pothesis. Therefore the only elements of 31 satisfying quadratic equa­
tions are the elements z = x of S. 

Let 3l* = (S*+fl/ * (£* where (S* is a Cayley-Dickson algebra with 
principal equation (9), Si is a division algebra with the same elements 
as S* but with multiplication [x, y]. Let multiplication in 31* be de­
fined by 

(22) (a + v'*b)*(% + v'*y)*={a*x+ [y,bS*]} +v'*(aS**y + %*b) 

for a, by x, y in Ê*, where 5* is the involution (11). 

THEOREM 4. A division algebra 3t* = (£*+£>' * S* with multiplication 
defined by (22), \y, yS*] not in %for nonzero y in ©*, is equivalent to 
a division algebra 3I=fë+t>fë with multiplication defined by (3), yoyS 
not in % for nonzero y in Ê, if and only if, first, (£*=(£, the equivalence 
being given by x<^xP1 x in S*, xP in S, an d, second, fëi=Ê0 by the 
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specific equivalence x<r->ô2xP, x in (Si, d2xP in S0, for some 5 ^ 0 in §. 
(This second condition may be stated as 

(23) [x, y]P - 82(xPoyP) 

for some 8 ^ 0 in %.) The equivalence between 21* and 21 is x+v' *y 
<->xP+ôv(yP). 

Suppose 2l*=2t. Since 2Ï* contains a Cay ley-Dickson subalgebra 
Ê* containing all of the elements of 21* which satisfy quadratic equa­
tions with coefficients in g, it follows that (£*==(£. Let the equivalence 
H between 2Ï* and 21, z<r-±zH, z in 2Ï*, zH in 21, have matrix 

«-es-
Then Q==0. For if #£(£*, both a and aH satisfy quadratic equations 
with coefficients in %, a ü £ f ë and 0 = 0 in (24). The nonsingularity 
of H implies that P and D are nonsingular. Moreover, the equiva­
lence H between 2t* and 21 induces the equivalence P between (S* 
and S. 

Let Lx, LX1 Rv, Ry* be the left and right multiplications of S and 
(S* defined by xy= yLx=^xRyi x*y=yLx*=xR*. Then multiplication 
is defined in 21 by cz = cRZ) 

(RX SRy\ (0) 

*"\SL?L.)' aL* =y°a' 
and in 2Ï* by c * z = cRz*t 

* (Rx S*Ry\ (1) ,. , 
R' = U r(1) r* / ' aLy = ^ ' a J ' Xo^-Lj/ JLX / 

where Rx* = PRxPP~\ Lx* = PLxPP-\ and so on. 
The equivalence of 21* and 21 is given by R?H=HRzH for all z 

in 2Ï*, or 

/PRXPP~X S*PRyPP~\ / P 0 \ = / P 0\/RxP+yT SRyD \ 

XS+L? PLxPP~X )\TD) \T Dj\SLi0yD LxP+yJ 

for all x, yin £*. 
I t follows from (25) that PRxP+S*PRyPP-lT = PRxP+yT or 

S*PRyPP-lT = PRyT. Then (10) implies that PSRyPP-lT = PRyT 

or SRyPP-xT = RyT. Let y = e and denote <?r by t. Since eP = 1, it fol­
lows that SP-lT=ReT=Rt, and T = PSRt. Therefore SR,PP-lPSRt 

— RvP8Rt or LyPsRt — RvPSRt- By a lemma of Moufang [4, Lemma l ] , 
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LyPsRypsRt — RypsRtLyPs* Hence LypsRyPsRt—TiypsRtLypsi and for 
all y5^0, RyPsRt^RtLyPs. 

If t5*0, let y = tP~\ Then RtsRt = RtLts = n(t)I = RtRts and 
Lts = Rts, / = £ in g. That is, if / ^ 0 , then %Ryps = ÇLyPs, Rvps=Lyps, 
yPSÇ:% for every ;y=^0 in ©*, and P is singular, a contradiction. 
Hence e r = * = 0 and T = PSRt = 0 in (24). 

With this result and (10), we may write (25) as 

(PRxppl PSRvrp~\ (P ° \ (P Q\(p*r SRyD\ 
XPSP^L™ PLxpP~X ) \ 0 D/~ \ 0 D) \SLyD LxP ) 

from which it follows that PSRypP~lD=PSRyD, or RyPP-lD=RyD. 
Let 3/ = e and denote &D by d. Since eP = 1, it follows that P~XD =ReD 
= Rdt or D=PRd. Thus P J / P P- 1 PP d = P I / P P d or RyPRd = RyPRd. Let 
^ = x P ~ 1 . Then RxRd — Rxd for every # in (£. Therefore d i s a scalar S 
in g, or £> = SP, 5 ^ 0. Thus 

* - ( r o ) 
\ 0 ÔP/ 

and (26) reduces to three identities and the final relationship 
PSP-lLv

1)P = ô2PSLyP' or UPP=S*PI$ from which (23) follows. 

COROLLARY. Let 21 = S+*>S &£ a division algebra with multiplication 
defined by (4), g(£g, and 21* = ©*+z;' * Ê* witó multiplication defined 
by 

{a + v' * b) * (x + v' * 3;) = {a * # + gi * (3; * bS*)} +v' * (aS* *y + x*b) 

for a, by x, y in (£*, where S* is tóe involution (11) of &* and gi is a fixed 
element of S*, gi^Eg. Then 21*=21 if and only if, first, &* is equivalent 
to 6, the equivalence being given by x<-*xP> xin (£*, xP in S, awd, second, 
giP=ö2gfor some ÔT^O iw %. The equivalence between 21* and 21 is 
tf+z;' *^<-»^P+Sz;(^P). 

For [x, y]=gi*(x *y) and w y = g(xy) in Theorem 4. Then (23) be­
comes {gi * (x *y) }P = giP(xP-yP) = è 2g (xP-yP), or sim ply giP= 8 2g. 

By Theorem 4 we see that the class of algebras described in §1 is 
actually considerably larger than that defined by (4), which was the 
class originally studied. For any such algebra is the particular case 
[ / = / , F = J, W=L0 of (3), (15), (16). Even such a simple variation 
21* of 21 as that in which multiplication is defined by 

(27)(a + v'*b) * (x + v' * y )={a* x+(y*bS*) *gi}+fl'* («5** y+ x*b), 

gi(£S> cannot be equivalent to 2Ï, since (27) is the case Z7 = I , F = J , 

file:///SLyD
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W—Rg* of (3), (15), (16), and Si cannot be equivalent to So as re­
quired by Theorem 4. For So has a left unity quantity g~l, while Si 
has a right unity quantity (the inverse of gi with respect to multipli­
cation x *y in S*). If S 0 = S i , then So has a right unity quantity h, 
and h = g~l, So has unity quantity g"1. Then x=xog~-1—gxg~l, or 
xg = gx for all x in S, g £ § , a contradiction. Actually Si is anti-
isomorphic to So in the case S*==S (that is, Ry* = PRypP~l) and 
glP = gS, for then i ^ = R*R0* = PRyPR0lPP-1 = PS^PRÇSP"1 

= PSLypsLgSP~l = ( P S ) L ^ ( P S ) - 1 . 
The automorphisms of the division algebras of order 16 over % 

which are studied in this paper are given directly by the conditions 
of Theorem 4, 21* = 51. 

THEOREM 5. A nonsingular linear transformation H on a division 
algebra 91 = S+z>S with multiplication defined by (3), yoyS not in %for 
nonzero y in S, is an automorphism of 21 if and only if H induces an 
automorphism P on S and 82P is an automorphism of So for some 
ô?*0 in $. Such an automorphism H of % has the form x+vy<r+xP 
+ Sv(yP). 

COROLLARY. A nonsingular linear transformation H on a division 
algebra 21 = S+ t fS with multiplication defined by (4), g (£3?, is an auto­
morphism of 21 if and only if H induces an automorphism P on S such 
that gP = Pgfor some d 5*0 in g. Such an automorphism H has the form 
x+vy<-+xP+ bv{yP). If t(g) T^O, then gP = g and either 8 = 1 or 8= — 1. 
If Kg) = 0 , then Ô4 = l. 

For gi = g in the corollary to Theorem 4. Moreover, t(gP)=t(g), 
n{gP) =n(g). If t(g) 7*0, then t(gP) = t(82g) = 8H(g) = *(g) implies that 
82 = 1> g ^ + i . if /(g) = 0 , then n{gP)=n(82g) = 8*n(g)=n(g) implies 
that S4 = l. 

REFERENCES 

1. A. A. Albert, Quadratic forms permitting composition, Ann. of Math. (1) vol. 43 
(1942) pp. 161-177. 

2. R. H. Bruck, Some results in the theory of linear non-associative algebras, Trans. 
Amer. Math. Soc. vol. 56 (1944) pp. 141-199. 

3. N. Jacobson, Cayley numbers and normal simple Lie algebras of type G, Duke 
Math. J. vol. 5 (1939) pp. 775-783. 

4. R. D. Schafer, Alternative algebras over an arbitrary field, Bull. Amer. Math. 
Soc. vol. 49 (1943) pp. 549-555. 

5. , On a construction for division algebras of order 16, Bull. Amer. Math. 
Soc. vol. 51 (1945) pp. 532-534. 

THE UNIVERSITY OF MICHIGAN 


