
SYMBOLIC SOLUTION OF CARD MATCHING PROBLEMS 

N. S. MENDELSOHN 

The main problem to be discussed here is the following. Find the 
number of arrangements of n cards marked 1, 2, • • • , n subject to 
conditions of the type: the card marked Hn shall not be jth, the card 
marked "k" shall not be rth, and so on. A generalization of this prob
lem is also discussed. 

A solution of the card matching problem has been given by Ka-
plansky in [2].1 The present solution depends on a somewhat differ
ent approach to the problem. Both Kaplansky and I make use of the 
finite difference operator £, defined by Ef(n) = / (w+l) : Kaplansky's 
solution is based on a symbolic interpretation of the method of in
clusion and exclusion; my solution gives a recurrence formula ex
pressing the solution of the problem of matching n cards in terms of 
the solution of the problems of matching less than n cards. The solu
tion proposed here is capable of giving explicit formulae for several 
particular cases, for example, the "problème des ménages. " Further
more, it is capable of being extended to problems of considerably 
greater generality. 

Suppose we have au a^ • • • , an cards, all considered distinct, of 
which ar are marked r. It is required to find the number of arrange
ments of these cards in which none of the cards marked V ' appear in 
any of pr specified places. As an immediate corollary, we also obtain 
the number of arrangements in which these conditions are violated 
(1) exactly s times and (2) at most 5 times. 

Let prs be the number of places simultaneously forbidden to cards 
marked r o r r , pr8t the number of places simultaneously forbidden to 
cards marked r, s or t, and so on. The form our solution takes depends 
on the prst. . . with the largest number of subscripts which does not 
vanish. We give the following examples. 

Case I. All £» = 0. The number of suitable arrangements is 
£•*+• ' ' +Onoi. This is obvious. 

Case II. Some piT^O, but all pij^O. The number of suitable ar
rangements is Fi(ai; pi)Fi(a2\ £2) • • • Fi(an; pn)0\ where F\{a\ p) 
~^2( — l)r[a, r] [p, r\Ea""r, the summation being carried out with re
spect to r which ranges from 0 to min (a, p). The symbol [a, r] is used 
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for the binomial coefficient a(a~-1) • • • (a —r+l)/rl This problem 
was solved by Kaplansky in [ l] . 

Case III. Some pij?*0, all £*•/* «0. The number of suitable arrange
ment is Fn{&U • * * » an\ pu • • ' $ Pn', Pit* ' • • , ƒ>!*, P*»9 • • • » />n-l;n)0! 
(written as <F*(a,-; £*; £</)0! if no ambiguity occurs). Here F\(a; p) is 
the same as defined in case II while Fn(ai\ pi\ pij) is defined induc
tively by the recurrence 

Pn(*<; Pi; Pa) - £ ( - l)*i+'"+*-»fa! • • • fa-i!K h][pln, fa] 

where the summation is carried out with respect to each of the indices 
fa> fa» • • • i fa-i> the index fa ranging from 0 to min (ar, p™)- Here 
B and Crepresent the following expressions: B =* Fn^.i{ar

m^fa; Pr—p™', 
pr«) where r and s range from 1 to n —1; C~F\(an\ pn-~ {fa+ • • • 
+fa-i}). 

Case IV. Some pijki^O, all pijki — O. The number of suitable ar
rangements is Fn{ai\ pi\ pi}\ pijk)0l (i,j, * « l , 2, • • • , n\ i<j<k) 
where Fn(a<; ƒ><; ƒ>,,; ^ « Z ( ~ l ) * l + * * ,+*n-2fa! • • • fa-i![ai, fa] 
• [/>i,n-i,«, fa] • • • [an-2, fa-2][£n-2,n-i,n, fa»-^]^,,*, where the summa
tion is carried out with respect to each of the indices fa, fa, • • • , fa-2. 
Here fa ranges from 0 to min (ari £r,n~i,n) and Fn***Fn(a?\ p*\ p%\ 
p%t), where: 

(* - 1, 2, • • • , n - 2), 

an> 

(i « 1, 2, • • • , n - 2), 

/>n-l = />n-l — (fel + fa + * * * + fa-2), 

/>n *• Pn ~* ( fa + fa + ' " * + fa-2), 

P*u =* Pa (*\ j « 1, 2, • • • , n - 2;j > i), 

£i\n-l = />*\n-l ~ pi,n~l,n (* ==» li 2, • • • , ft ~ 2), 

/>tn •• />tn — Pitn~l,n (* « 1, 2, • • • , ft — 2), 
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P*ük = pijk unless; = n - 1, k = n, 

Pi,n-l,n = 0. 

Note that this gives a reduction formula in which pi,n-i,n are re
duced to 0. By permuting the a», repeated applications of the above 
formula reduce all the pijk to 0, after which the formulas of case III 
apply. 

The general case can now be written down by analogy. 
If we wish to find the number of arrangements in which the condi

tions are violated (1) exactly 5 times and (2) at most s times, we re
place 0! by ( - l ) * [ r a - 0 , s]0! and by ( - l ) « [ m - l - 0 , s]0\ respec
tively, where w=X) a * ( s e e fc] and [4]). 

We give a proof for the case I I I ; the extension of the proof to the 
other cases is obvious. 

In the formulas as they stand certain conventions must be made 
for the cases where some a* or pi reduce to 0. These are: 

<Fn(0, 0 , • • • , 0 ; pu ' ' • , pn\ pu, • • • , pn-l,n) = 1, 

Fn(0t 02, • • ' , an\ pu ' ' ' y pn', pl2, ' ' , pn-l,n) 

= Fn^i{a%y • ' • , an] p2, • * * , pn] p2Zy ' ' ' , pn-l,n), 

Fn{dlj ' ' ' , dn\ 0, p2y * * * , pn] pl2, ' ' ' , pn-l,n) 

= E0 1Fn_i(a2 , • • • , an; p2, • • • , pn] p2h ' ' ' > pn-i,n)< 

With these conventions the proof of the theorem is obtained by in
duction on the sum X ^ i - If X ^ i ^ O , the formula quoted for Fn in 
case III becomes 

Fn(aiy • • • , an\ pu • • • , pn\ 0, • • • , 0) 

*= Fw_i(ai, • • • , an-\\ pu • • • , pn-i; 0, • • • , 0)Fi(an; pn). 

Hence by induction, 

Fn{aiy • • • , an; ph • • • , pn] 0, • • • , 0) = u ^ i f o ; Pù> 

the product ranging over all terms i = l, 2, • • • , n. 
This is precisely the formula quoted in case II and was given by 

Kaplansky in [ l ] . We write the number of suitable arrangements in 
the form 

Fn(diy • • • , dn] pU ' ' ' i Pn] pl2, ' ' ' , pn-l,n)0\. 

Suppose now that ^>n~i,n5^0. (This can be brought about by a change 
of notation if necessary, since we are now considering the case where 
not all pij — 0.) Consider one of the places which is forbidden simul
taneously to cards marked (» — 1) and to cards marked n. If we lift 
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the prohibition on the cards marked (w —1) to this place, the number 
of suitable arrangements is 

Fn(ah • • • , aw_i, an; pi, • • • , #n_i — 1, pn; pn, • • • , pn~i,n — 1)0!. 

Of these arrangements, 

an-iFn(ai, • • • , an_i — 1, an; pi, • • • , pn„i — 1, pn — 1; 

#11, • ' * , #n-l,n - 1)0! 

have a card marked (n — 1) in the specified place. Thus 

Fn(ai, • - - , an\ pu • • • , #n; #12, • • • , pn-i,n) 

= F n ( ^ b * • * , Gn] ph * * ' , Pn-l — 1» #nî #12, * ' * , pn-l,n ~~ 1) 

— an^iFn(ait • • • , an_i — 1, an; pi, • • • , #w_i — 1, pn — 1; 

#12, • • • , pn-i,n — 1). 

The induction is established by substituting the values in the right-
hand side of this equation into the recurrence stated for Fn. 

For computing purposes, the following remark is useful. If ƒ>»,•=0 
(i = l, 2, • • • , r;j = r+l, r+2, • • • , n), then 

Fn(a>i, - - - , ar, ar+h • • • , an; pi, • • • , pr, pr+u • * • , #n', #12, • • • , #n-i,n) 

= Fr(ai, • • • , ar; ph • • • , #r; #12, • • • , pr-itr) 

'Fn^r{ar+i, ' • • , an; pr+h ' * • , Pn] #r+l,r+2, * * * , pn-l,n)* 

This factorization holds in the most general case and is obvious from 
first principles, or it can be established by induction. 

We now give an example illustrating the use of the above formulae. 
In this example, the condition 

E f f ^ E Pi — 2 Pu + Z) Puk • • • y 
which is necessary if the problem as stated is to have a meaning, is not 
satisfied. The result obtained is still useful for two reasons: (1) the 
problem may be made meaningful by embedding it in a larger prob
lem, for example, by adding ^pi—^pij+Epijk-- * * * —ZXv blank 
cards with no restriction as to where these cards are to be put; (2) the 
coefficient of En~k in the polynomial/(E) gives the number of ways 
of choosing k compatible conditions from the converse conditions and 
this is always meaningful. (The converse condition to ai is not j t h " 
is defined as the condition ai is j t h . " 

Example. Let a» = l;pi = p (i = 1,2, • • • ,n); £12 = £23 = • • • = £n-i,» 
— r; all remaining pij = 0; all £»7* = 0. These conditions imply r^p/2. 
Let the polynomial operator be £/». By applying the recurrence for-
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mula of case III twice one obtains 

Also, Ui*=E-p; U2**E*~2pE+(p*--r). By induction it is easily 
shown that 

tf«-è(~i)Mko][tt, *]£*+••• 
Jfc=0 

+ ( - iy[n - sf s][n - 25, * - 2*]/>*-2«f + • • • }E—». 

In the particular case where £ = 2, r « l , the solution can be re
duced to the simpler form 

Un « Ê ( - 1)*[2» - * - 1, k]E»~K 

This polynomial is useful in the solution of the "problème des 
ménages" ; cf. [3]. 

Generalization to the matching of several decks of cards. Battin 
[5] and Wilks [ô] have discussed the following problem. Suppose 
there are k decks of cards of several suits &, C%, • • • , Cr, the decks 
not necessarily having the same number of cards in each suit, nor 
need the decks be of identical composition. One card at a time is 
dealt from each deck, and if all the cards at a drawing are of the same 
suit a &-ple match is said to occur. Amongst the questions of interest 
are: (1) the probability of h k-ple matches (simply called matches 
from here on), and (2) the probability of at most h matches. 

A case which is very easily treated by symbolic methods is that of 
(5+1) decks of cards, s of which are identical, the other deck being 
different. We also assume that this odd deck has less cards than the 
other decks. Let the identical decks have ai cards of suit 1, a% cards of 
suit 2, • • • , an cards of suit n and let ai+az~\- • • • +an *=N. Let the 
remaining deck have Pi cards of suit i ( i » l , 2, • • • , n), where 
T,p4£E*<-N. We can show that the probability of no matches is 
given by 

P(O)=-^{n^)(^;4(O0-, 
the probability of exactly h matches is given by 

pw - - ^ j n *?\*« pt)}i- D*[ff - 0, *](oo*, 
while the probability Q(h) of at most h matches is given by 
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QW - - ^ { Û *?{«; #<)}(- Dh[N - o - i f *](0ih 

where $i(8)(#î /O ̂ ( " ^ W k *]*[& *]£""""', the summation being 
with respect to i which ranges from 0 to min (a, p). The proof of 
this can be obtained by induction on observing that $i(<r)(a; p) satis
fies the recurrence 

$i* (a; iO = $1* (a; # - 1) - a$i (a - 1, p - 1). 

Note that the case 5 = 1 (that is, the general two deck case) has first 
been given by Kaplansky and Fréchet [l and 4], although a solution 
by Greville [7] is usually quoted as the first obtained. 

We can even generalize the card matching problem as follows. 
Suppose that there are 5 identical packs of cards, each pack having 

a* cards, considered as distinct, marked i (i — 1, 2, • • • , n). Suppose 
that the packs be arranged in a rectangular array, each row of the 
array consisting of all the cards of one pack. Suppose that to cards 
marked i, we prohibit pi columns in the sense that a column forbidden 
to cards marked i must not contain 5 cards marked i (although less 
than s cards marked i is permissible). It is required to find the number 
of suitable arrangements. 

Let pij be the number of columns forbidden simultaneously to 
cards marked i and j . Similarly pijk, pijkh and so on, are defined. We 
consider only the analogue of case III of our original problem, ex
tension to other cases being obvious. Let pijk = 0 for all i, j , k, but at 
least one pij^O. The number of suitable arrangements is 

(ft) 8 

$n (ai, • • • , an; ph • • • , pn; pu, • • • , £n-i,n)(0!) , 
where $n

( , ) satisfies the following recurrence: 3>i(a)(a, p) is identical 
with previously given definition; 

(«V 
$n («If ' • ' , an; pi, ' - ' , pn] pl2, ' ' • , pn~l,n) 

= Z ( - l)*l+'"+*-l(*il • • • K-i\)*[au hxy[pln, h] 
• • • [fln-l, kn-l]*[pn-l,n, kn-l\BC, 

where the summation is carried out with respect to each of the in
dices ki, &2, • • • , kn~i, the index kr ranging from 0 to min (ar, prn). 
Here B and C represent the following expressions: 

B = $ n - l ( 0 r — K\ Pr — prn\ pr*), 

where r and s range from 1 to w —1; C^^8)(an; pn — {&1+&2+ • • • 
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The proof of this formula is by induction on ]C/>»y, where we make 
use of the relationship <3>n(8)(#b • • • , an; Pu • • • >/>»;/>i2, • • •, £n-i,n) 
= $n

(8)(ai, • • • , aw; pu • • • , £»_i — 1 , £n ; £12, • • • , £»_i f»--l) 
—a„_i**w

(fi)(^i» • • • 1 ÖW_I — 1 , a n ; £1, • • • , />»-.i — 1 , £„ — 1; £12, • • • , 
£ n - i , « - l ) . 

The probability of (1) exactly h violations of the conditions and 
(2) at most h violations of the conditions can be written down in the 
usual way. If all the a< = l, then *»<•>«#». I t follows that if ƒ(£)()! 
is a solution of a one-pack problem then ƒ(£)(()!)* is the solution of an 
s-pack problem provided a< = l. 

For example, the problème des ménages asks for the number of 
ways in which n cards marked 1,2, • • • , w, respectively, can be ar
ranged so that the card marked 1 is not first or second, the card 
marked 2 is not second or third . . . the card marked n is not wth or 
first. The solution is Afn(£)0! where 

n / 2n \ 
Mn(E) « £ ( - 1)M 7) [2n - K * ] £ - * . 

Since all the a» = l, the solution to a s-pack problème des ménages, 
in the sense of our theorem, is Afn(E)(0!)*. 

An alternative approach to the multiple matching problems, using 
symbolic methods, has recently been given by Kaplansky and 
Riordan in [8]. 

REFERENCES 

1. I. Kaplansky, Symbolic solution of certain problems in permutations\ Bull. Amer. 
Math. Soc. vol. 50 (1944) pp. 906-914. 

2. , On a generalization of the u problème des rencontres," Amer. Math. 
Monthly vol. 46 (1939) pp. 159-161. 

3. , Solution of the u problème des menages," Bull. Amer. Math. Soc. vol. 49 
(1943) pp. 784-785. 

4. M. Fréchet, Note on the aproblème des rencontres," Amer. Math. Monthly 
vol. 46 (1939) p. 501. 

5. I. L. Battin, On the problem of multiple matching, Ann. Math. Statist, vol. 13 
(1942) pp. 294-305. 

6. S. S. Wilks, Mathematical statistics, pp. 208-213. 
7. T. N. E. Greville, The frequency distribution of a general matching problem, 

Ann. Math. Statist, vol. 12 (1941) pp. 350-354. 
8. I. Kaplansky and J. Riordon, Multiple matching and runs by the symbolic 

method, Ann. Math. Statist, vol. 16 (1945) pp. 272-277. 

QUEEN'S UNIVERSITY, KINGSTON, ONT. 


