Ann. of Math. vol. 37 (1936) pp. 443-447.

2. H. Brunn, Über Kerneigebiete, Math. Ann. vol. 73 (1913) pp. 436-440.

3. Nelson Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. vol. 44 (1938) pp. 305-354.

4. I. Liberman, On some characteristic properties of convex sets, Rec. Math. (Mat. Sbornik) N.S. vol. 13 (1943) pp. 239-262. See also Mathematical Reviews vol. 6 (1945) p. 184.

5. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.

6. M. H. A. Newman, *Elements of the topology of plane sets of points*, Cambridge University Press, 1939.

UNIVERSITY OF CALIFORNIA AT LOS ANGELES

THE SPACE L^w AND CONVEX TOPOLOGICAL RINGS

RICHARD ARENS

1. Introduction. The motive for investigating the class L^{ω} of functions belonging to all L^{p} -classes has no measure-theoretic origin: it was our desire to discover whether or not in every convex metric ring¹ R one could find a system $\{U\}$ of convex neighborhoods of 0 having the property that $f, g \in U$ implies $fg \in U$. We show here that L^{ω} has no proper convex open set U containing 0 and satisfying the relation $UU \subset U$, thus supplying the desired counter-example.

The significance of neighborhood systems of the type $\{U\}$ described above is made somewhat clearer by a proof that they insure the existence and continuity of entire functions (for example, the exponential function) on the topological ring R.

Such neighborhood systems $\{U\}$ are always present in rings of continuous real-valued functions over any space, provided that convergence means uniform convergence on compact sets.

We also consider the relation of L^{∞} , L^{ω} , and the L^{p} -classes, since L^{ω} does not seem ever to have been discussed as a topological and algebraic entity.

2. Notation and elementary facts. Let us consider measurable functions defined on [0, 1]. For $p \ge 1$ we shall consistently employ the usual notation

1946]

Received by the editors June 26, 1946.

¹ More precisely, metrizable, convex, complete topological linear algebra. For these one requires continuity in both ring operations and scalar multiplication. It will appear that L^{ω} has these properties.

$$||f||_{p} = \left(\int_{0}^{1} |f(x)|^{p} dx\right)^{1/p}$$

even when the right side is infinite.

Therefore L^p consists of all functions f for which $||f||_p$ is less than ∞ . L^{ω} evidently consists of all functions f for which $||f||_1$, $||f||_2$, \cdots , $||f||_p$, \cdots are all finite.

Because of the relation²

(H)
$$||fg||_p \leq ||f||_q \cdot ||g||_r, \qquad 1/p = 1/q + 1/r,$$

one has

$$||f||_1 \leq ||f||_2 \leq \cdots,$$

since the measure of [0, 1] is 1. Therefore we may take the sets of functions f,

 $\|f\|_p < e$

where $p \ge 1$ and e > 0, as neighborhoods of 0 in L^{ω} . These neighborhoods are convex because

$$\|\lambda f + \mu g\|_{p} \leq \lambda \|f\|_{p} + \mu \|g\|_{p} < e$$

when $\lambda, \mu \ge 0, \lambda + \mu = 1$, and $||f||_p$, $||g||_p < e$. Therefore addition is continuous in L^{ω} and, by relation (H), multiplication is also.

Multiplication is not generally possible in L^{p} .

Now the inequalities above imply that the limit

$$\lim_{p \to \infty} \left\| f \right\|_p = \left\| f \right\|_{\infty}$$

always exists. (It may be infinite.) Those f's for which $||f||_{\infty}$ is finite form a set usually called L^{∞} , and $||f||_{\infty}$ is taken as a norm in L^{∞} . We shall employ the known fact that $||f||_{\infty}$ is also the least number h such that |f(x)| > h only on a set of measure zero.

Multiplication in L^{∞} is continuous, since

$$||fg||_{\infty} \leq ||f||_{\infty} ||g||_{\infty},$$

from which it follows that if U is any sphere about 0, contained in the unit sphere of L^{∞} , then $UU \subset U$.

3. The relation of L^{∞} , L^{ω} , and L^{p} . These spaces are related by successive proper inclusion.

THEOREM 1. $L^{\infty} \subset L^{\omega} \subset L^{p}$ but $L^{\infty} \neq L^{\omega} \neq L^{p}$. The identity mappings

[October

² Cf. E. J. McShane, *Integration*, Princeton, 1944, for most of the facts which we assume. A formula equivalent to (H) appears on p. 186.

 $L^{\infty} \rightarrow L^{\omega} \rightarrow L^{p}$ are continuous, but their inverses are not. L^{∞} is dense in L^{ω} , and L^{ω} is dense in each L^{p} .

PROOF. The inclusions and the continuity of the mappings are obvious.

If we define $l(x) = |\log x|$, then *l* does not belong to L^{∞} . Since $||l||_{p} = (p!)^{1/p}$, $l \in L^{p}$ for each $p \ge 1$, and hence $l \in L^{\omega}$. Thus $L^{\omega} \ne L^{\infty}$.

Similarly, the function with values $x^{-1/2p}$ belongs to L^p , but not to L^{2p} , and hence not to L^{ω} .

Now let $l_n(x) = n^{-1} |\log x|$ or *n*, whichever is the smaller. Then $||l_n - 0||_p < n^{-1} ||l||_p$ which tends to zero as $n \to \infty$; but $||l_n - 0||_{\infty} = n$, $n \to \infty$. Thus the inverse of the mapping $L^{\infty} \to L^{\omega}$ is not continuous.

A similar process applied to the function $x^{-1/2p}$ yields a sequence which converges to zero in L^p but not in L^{4p} , and thus not in L^{ω} .

Finally, suppose $f \in L^{\omega}$ be given. Define

$$f_n(x) = \begin{cases} -n & \text{when } f(x) < -n, \\ f(x) & \text{when } -n \leq f(x) \leq n, \\ n & \text{when } n < f(x). \end{cases}$$

Then $f_n \rightarrow f$ in each L^p and hence in L^{ω} . Since the f_n are taken from L^{∞} the latter is dense in L^{ω} and in each L^p , which establishes the third sentence of the theorem.

 L^{ω} can be metrized, so as to be complete, by

$$(f, g) = \sum_{p=1}^{\infty} \frac{2^{-p} ||f - g||_p}{1 + ||f - g||_p}$$

4. Multiplication in L^{ω} . By relation (H), this is continuous. The following theorem shows the divergence between its properties and those of normed rings.

THEOREM 2. L^{ω} is a convex metric commutative ring with the property that if U is a convex open set in L^{ω} containing 0, and if $UU \subset U$, then U coincides with the whole space L^{ω} .

PROOF. There exists a $p \ge 1$ and an e > 0 such that $||f||_p \le e$ implies $f \in U$. Therefore a function f having values not greater than h on a set of measure not greater than $(e/h)^p$, and vanishing elsewhere, must lie in U, together with all its powers f^2, f^3, \cdots .

Let h = 2, and set $m = (e/2)^p$, for brevity.

Consider any function g which has the value b on a set S of measure a, and vanishes elsewhere. Suppose k is any integer such that $a \leq mk$. Select an integer n such that $bk \leq 2^n$. Now we can cover S by k nonoverlapping subsets of measure not greater than m and define

functions f_1, \dots, f_k , where f_i has the value $(bk)^{1/n}$ on the *i*th subset of S, and vanishes elsewhere. Thus $f_1, \dots, f_k \in U$, and also $f_1^n, \dots, f_k \in U$. Since U is convex

$$g = \frac{1}{k}f_1^n + \cdots + \frac{1}{k}f_k^n$$

must belong to U.

Now any function g' assuming only a finite number of values is a linear combination, with positive constants whose sum is 1, of such functions as g. Therefore these functions lie in U.

Since these functions g' are known to be dense in L^{∞} and thus in L^{ω} , we have U a dense, open convex set in L. Thus $U=L^{\omega}$.

COROLLARY. The topology assigned to L^w cannot be defined by any norm.

5. Entire functions in rings. Of course Theorem 2 shows more about L^{ω} than is needed for a counter-example to the proposition mentioned in the introduction, as will appear from the following theorem, and the fact that $e^{|\log x|} = 1/x$ is not summable, while $|\log x|$, as we have seen, lies in L^{ω} .

THEOREM 3. If R is a complete topological ring with a complete system $\{U\}$ of convex neighborhoods of zero each satisfying $UU \subset U$, and

$$P(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is a power series representing an entire function, then, for each $f \in R$,

$$P(f) = a_0 + a_1 f + a_2 f^2 + \cdots$$

converges, and P is a continuous operation on R into itself.

In particular, for the exponential function, if U is convex, contains zero, and $UU \subset U$, then

$$e^{U} \subset 1 + 2U.$$

PROOF. Let us first show that P(f) converges. Therefore, suppose U is any neighborhood of the system $\{U\}$. Let $f \in \mathbb{R}$.

Then for some t > 0, $tf \in U$. Hence $(tf)^2$, $(tf)^3$, \cdots will all lie in U. Further, let us find m_0 so large that for $m \ge m_0$

$$|a_mt^{-m}|+|a_{m+1}t^{-m-1}|+\cdots$$

is less than 1. Then, since U is convex, we can deduce that for $n > m > m_0$,

$$a_m t^{-m}(tf)^m + \cdots + a_n t^{-n}(tf)^n$$

or its equivalent

$$a_m f^m + \cdots + a_n f^n$$

must lie in U.

Since R is assumed complete, P(f) converges to a limit. The continuity of P can be proved as follows:

$$D = P(f + h) - P(f) = \sum_{n=0}^{n} a_{n+1}g_{n+1}$$

where

$$g_n = (f + h)^{n+1} - f^{n+1}.$$

Let U be a neighborhood of the system $\{U\}$, and suppose $f/t \in U$ where $0 < t < \infty$. Select a real number a,

$$a > |a_1|(t+1) + |a_2|(t+1)^2 + \cdots, \qquad a \ge 1,$$

and require h to be so close to zero that $ah \in U$.

There is no point in writing down the expansion of g_n since terms cannot be collected when R is not commutative. However, each term will contain h, and if g_n is written as a sum of products of powers of f/t and h, the coefficients will add up to $(t+1)^n - t^n$.

Since f/t and ah lie in U, and $UU \subset U$, we have

$$h_n = (t+1)^{-n}ag_n \in U,$$

where, before dividing, we have replaced $(t+1)^n - t^n$ by $(t+1)^n$. Now D is a linear combination of h_1, h_2, \cdots with coefficients whose absolute values add up to less than 1, and since U is convex we conclude $D \in U$.

Therefore P is continuous at f.

INSTITUTE FOR ADVANCED STUDY

1946]