ON THE LOWER ORDER OF INTEGRAL FUNCTIONS

S. M. SHAH

Let $f(z) = \sum_{0}^{\infty} a_n z^n$ be an integral function of order ρ . It is known that¹

(1)
$$\limsup_{n\to\infty}\frac{n\log n}{\log \{1/|a_n|\}} = \rho = \limsup_{r\to\infty}\frac{\log \log M(r)}{\log r} \quad (0 \le \rho \le \infty).$$

A similar result for the lower² order λ , namely

$$\liminf_{n\to\infty}\frac{n\log n}{\log \{1/|a_n|\}} = \lambda = \liminf_{r\to\infty}\frac{\log \log M(r)}{\log r},$$

does not always hold. In fact for

$$\exp (z^2) + \exp (z) = 2 + z + z^2 \left(\frac{1}{1!} + \frac{1}{2!}\right) + \cdots,$$
$$\liminf_{n \to \infty} \frac{n \log n}{\log \{1/|a_n|\}} = 1$$

whereas $\lambda = \rho = 2$.

We prove here the following theorem.

THEOREM 1. If $f(z) = \sum_{0}^{\infty} a_n z^n$ is an integral function of order ρ and lower order λ $(0 \leq \lambda \leq \infty)$ then

(2)
$$\lambda \ge \liminf_{n \to \infty} \frac{n \log n}{\log \{1/|a_n|\}} \ge \liminf_{n \to \infty} \frac{\log n}{\log |a_n/a_{n+1}|}$$

COROLLARY 1.8

(3)
$$\lim_{n \to \infty} \inf \frac{\log |a_n/a_{n+1}|}{\log n} \leq \liminf_{n \to \infty} \frac{\log \{1/|a_n|\}}{n \log n} = \frac{1}{\rho} \leq \frac{1}{\lambda}$$
$$\leq \limsup_{n \to \infty} \frac{\log \{1/|a_n|\}}{n \log n}; \leq \limsup_{n \to \infty} \frac{\log |a_n/a_{n+1}|}{\log n} \cdot$$

Received by the editors April 4, 1946, and, in revised form, May 3, 1946.

¹ E. C. Titchmarsh, Theory of functions, pp. 253–254; E. T. Copson, Theory of functions of a complex variable, pp. 175–178.

² For the definition, and so on, see (i) J. M. Whittaker, *The lower order of integral functions*, J. London Math. Soc. vol. 8 (1933) pp. 20–27; (ii) S. M. Shah, *The lower order of the zeros of an integral function* (II), Proceedings of the Indian Academy of Sciences (A) vol. 21 (1945) pp. 162–164.

² Cf. a similar result (1) in S. M. Shah, *The maximum term of an entire series*, Mathematics Student vol. 10 (1942) pp. 80-82.

COROLLARY 2. If $\lim_{n\to\infty} n \log n/\log\{1/|a_n|\} = L$ where $0 \le L < \infty$ then $f(z) = \sum_{0}^{\infty} a_n z^n$ is an integral function of regular growth⁴ and of order L.

THEOREM 2. If (i) $f(z) = \sum_{0}^{\infty} a_n z^n$ is an integral function of order ρ and lower order λ ($0 \le \lambda \le \infty$) such that (ii) $|a_n/a_{n+1}|$ is a nondecreasing function of n for $n > n_0$, then

(4)
$$\lambda = \liminf_{n \to \infty} \frac{n \log n}{\log \{1/|a_n|\}} = \liminf_{n \to \infty} \frac{\log n}{\log |a_n/a_{n+1}|},$$

(5)
$$\rho = \limsup_{n \to \infty} \frac{\log n}{\log |a_n/a_{n+1}|}.$$

We note that the hypothesis (ii) of Theorem 2 does not imply that f(z) is of regular growth. In fact we have the following theorem.

THEOREM 3. There exists an integral function $f(z) = \sum_{0}^{\infty} a_n z^n$ for which (i) $a_n > 0$, (ii) a_n/a_{n+1} is a steadily increasing function of n, and (iii) $\rho > \lambda$.

An interesting application of these results can be made to the series $F(z) = \sum_{0}^{\infty} a_n \epsilon_n z^n$ where $\{\epsilon_n\}$ are a set of numbers such that $|\epsilon_n| = 1$ or 0 and such that $\sum_{0}^{\infty} a_n \epsilon_n z^n$ consists of an infinite number of terms. F(z) is an integral function. Let its order be $\rho(F)$ and lower order be $\lambda(F)$. Since

$$M(r, f) \geq |a_n| r^n \geq |a_n \epsilon_n| r^n$$

for every *n* and *r*, and so if $\mu(r)$ denotes the maximum term, $M(r, f) \ge \mu(r, F)$. Hence

(6)
$$\lambda(f) \geq \lambda(F); \quad \rho(f) \geq \rho(F).$$

If $|a_n/a_{n+1}| = \psi(n)$ (say) is a nondecreasing function of *n* then

(7)
$$\lambda(f) = \liminf_{n \to \infty} \frac{n \log n}{\log \{1/|a_n|\}} \leq \limsup_{n \to \infty} \frac{n \log n}{\log \{1/|a_n \epsilon_n|\}} = \rho(F)$$

and so we have the following theorem.

THEOREM 4. If $f(z) = \sum_{0}^{\infty} a_n z^n$ is an integral function of order ρ and of lower order λ and is such that $|a_n/a_{n+1}|$ is a nondecreasing function of n for $n > n_0$, then $F(z) = \sum_{0}^{\infty} a_n \epsilon_n z^n$ is of order $\rho(F) \ge \lambda$.

For instance every function $F = \sum_{0}^{\infty} \epsilon_n z^n / n!$ is of order 1.

An example, to illustrate the point that by an appropriate choice

⁴ Cf. G. Valiron, Lectures on the general theory of integral functions, pp. 41-44.

S. M. SHAH

of ϵ_n the order $\rho(F)$ of $F(z) = \sum a_n \epsilon_n z^n$ can be made equal to any number x where $\lambda(f) \leq x \leq \rho(f)$, is given in the proof of Theorem 3.

The function $\exp z = \sum_{0}^{\infty} z^{n}/n!$ for which $\psi(n)$ is an increasing function of *n* is bounded on the real negative axis and the series

$$F(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$$

is bounded on the real axis. If $\psi(n)$ is increasing sufficiently rapidly then we prove that f(z) and F(z) are not bounded on any line $\arg z = \alpha$ $(0 \le \alpha \le 2\pi)$. In fact we have the following theorem.

THEOREM 5. If $f(z) = \sum_{0}^{\infty} a_n z^n$ is an integral function of lower order λ such that $|a_n/a_{n+1}| \ge \vartheta^2 |a_{n-1}/a_n|$ for $n > n_0$ then

(8)
$$\limsup_{r \to \infty} \frac{\log \log m(r, f)}{\log r} \ge \lambda; \qquad \limsup_{r \to \infty} \frac{\log \log m(r, F)}{\log r} \ge \lambda$$

where $m(r, f) = \min_{|z|=r} |f(z)|$ and $\vartheta = 2 \cdot 2$.

LEMMA. a_n is any sequence of real or complex numbers such that⁵

(i)
$$|a_n| < 1$$
 for $n > n_0$.

Let

$$\theta(n) = \frac{\log \{1/|a_n|\}}{n \log n}; \qquad \phi(n) = \frac{\log |a_n/a_{n+1}|}{\log n}; \\ \alpha = \liminf_{n \to \infty} \phi(n); \qquad \gamma = \liminf_{n \to \infty} \{1/\phi(n)\}; \\ \beta = \limsup_{n \to \infty} \phi(n); \qquad \delta = \limsup_{n \to \infty} \{1/\phi(n)\}; \\ A = \liminf_{n \to \infty} \theta(n); \qquad C = \liminf_{n \to \infty} \{1/\theta(n)\}; \\ B = \limsup_{n \to \infty} \theta(n); \qquad D = \limsup_{n \to \infty} \{1/\theta(n)\};$$

then

(9)

$$\alpha \leq A = 1/D; \quad 1/C = B \leq \beta; \quad C \geq \gamma$$

(ii) If further $\psi(n)$ is a nondecreasing function of n for $n \ge N$ and $\psi(N) \ge 1$ then

(10)
$$C = \gamma = 1/\beta; \quad D = \delta = 1/\alpha.$$

The proof of (9) is straightforward and omitted.

[December

⁵ Some of the relations in (9) and (10) hold under less restrictive conditions.

PROOF OF (10). By hypothesis (ii), α , β , γ and δ are non-negative and $\beta = 1/\gamma$, $\alpha = 1/\delta$. We prove $B \ge \beta$. Suppose first $0 < \beta < \infty$. Then

$$\psi(n) > n^{\beta-\epsilon}$$
 for $n = N_1, N_2, \cdots, N_p, \cdots$.

Let $N_1 > \max\{n_0, N\}$. Then

$$\left|\frac{1}{a_n}\right| = k(N_1)\psi(N_1+1)\cdots\psi(n-1),$$

$$\theta(n) = o(1) + \frac{\log\psi(N_1+1)+\cdots+\log\psi(n-1)}{n\log n}$$

Let $n = [N_p \log^2 N_p] + 1$. Then

$$\theta(n) \ge o(1) + \frac{(n-N_p) \log N_p^{n-\epsilon}}{n \log n} \cdot$$

Hence $B \ge \beta$ which holds also when $\beta = 0$. If β be infinite the above argument with an arbitrary large number instead of $\beta - \epsilon$ gives that $B = \infty$. Hence from (9) we get that $B = \beta$ and so $C = \gamma = 1/\beta$. The second relation in (10) follows similarly.

PROOF OF THEOREM 1. Since $\sum a_n$ is convergent, $|a_n| < 1$ for $n > n_0$. As $C \ge \gamma$ we need prove $\lambda \ge C$ only. Suppose first $0 < C < \infty$. Then

$$\frac{n \log n}{\log \{1/|a_n|\}} > C - \epsilon,$$

for all $n \ge N(\epsilon).$
$$|a_n| > n^{-n/(C-\epsilon)},$$

Let $r_n = 2n^{1/(C-\epsilon)}$. If $r_n \leq r \leq r_{n+1}$ (n > N) then

 $M(r) \geq \left| a_n \right| r^n \geq \left| a_n \right| r_n^n > n^{-n/(C-\epsilon)} \exp(n \log r_n) = \exp(n \log 2).$

Hence $\log M(r) \ge \log 2\{(r/2)^{c-\epsilon}-1\}$ for all large r and so $\lambda \ge C$, which holds when C=0. If $C=\infty$, the above argument shows that $\lambda = \infty$.

Corollary 1 follows from (1), (2) and (9), and Corollary 2 from (1) and (2). The example given at the beginning of the paper shows that f(z) may be of regular growth and $\lim_{n\to\infty} \{n \log n/\log \{1/|a_n|\}\}$ may not exist.

PROOF OF THEOREM 2. Let $\mu(r)$ denote the maximum term, $\nu(r)$ its rank. By hypothesis (ii), $\psi(n) > \psi(n-1)$ for an infinity of *n*; for if otherwise $\psi(n) = \psi(n+1) = \cdots$ ad inf for n > p, say, and hence the radius of convergence of the series $\sum a_n z^n$ would be finite. $\psi(n)$ tends to infinity with *n*.

When $\psi(n) > \psi(n-1)$ the term $a_n z^n$ becomes a maximum term

1946]

S. M. SHAH

[December

and we have $\mu(r) = |a_n|r^n$, $\nu(r) = n$ for $\psi(n-1) \leq r < \psi(n)$. Now $\lambda = \lim \inf_{r \to \infty} \log \nu(r) / \log r$. Suppose first that $0 < \lambda < \infty$. Then $\nu(r) > r^{\lambda-\epsilon}$ for $r > R = R(\epsilon)$. Let |z| = r > R and let $a_{m_1} z^{m_1}$ and $a_{m_2} z^{m_2}$ $(m_1 > n_0; \psi(m_1 - 1) > R)$ be two consecutive terms so that $m_1 \leq m_2 - 1$ and let $m_1 < n \leq m_2$. Since $a_{m_1} z^{m_1}$ is maximum term we have $\nu(r) = m_1$ for $\psi(m_1 - 1) \leq r < \psi(m_1)$. Hence for every r in this interval $m_1 = \nu(r) > r^{\lambda-\epsilon}$. In particular $m_1 > \{\psi(m_1) - C\}^{\lambda-\epsilon}$ where $C = \min\{1, ((\psi(m_1) - \psi(m_1 - 1))/2\}$. Further we have

$$\psi(m_1) = \psi(1+m_1) = \cdots = \psi(n-1)$$

Hence

$$\psi(n_0+1)\cdots\psi(n-1) = \left|\frac{a_{n_0+1}}{a_n}\right| \leq \{\psi(n-1)\}^{n-n_0-1} < \{C+m_1^{1/(\lambda-\epsilon)}\}^{n-n_0-1} < K(n_0)2^n n^{(n-n_0-1)/(\lambda-\epsilon)}.$$

Hence for all large n

$$\left|\frac{1}{a_n}\right| < K_1(n_0) 2^n \cdot n^{(n-n_0-1)/(\lambda-\epsilon)}$$

and so

(11)

which holds when $\lambda = 0$. If $\lambda = \infty$ the above argument gives $C = \infty$. Hence from (2), $\lambda = C$ and so from (10) we get (4); and from (1) and (10) we have (5).

 $C \geq \lambda$

PROOF OF THEOREM 3. Let $n_1 = 2$, $n_{s+1} = n_s^4$ (s = 1, 2, 3, ...),

$$r_{1} = 1, \qquad r_{m} = m \qquad \text{for } n_{s} \leq m < n_{s}^{2},$$

$$r_{m} = n_{s+1} - \frac{n_{s+1} - m}{\{(n_{s+1})!\}^{(n_{s+1})!}} \qquad \text{for } n_{s}^{2} \leq m < n_{s+1},$$

 $s = 1, 2, 3, \cdots$, and let

$$f(z) = 1 + \sum_{1}^{\infty} \frac{z^n}{r_1 r_2 \cdots r_n}$$

Then $a_n > 0$ and $a_n/a_{n+1} = r_{n+1}$ which is a steadily increasing function of n. Also

$$\theta(n) = \frac{\log r_1 + \cdots + \log r_n}{n \log n} \cdot$$

Hence

$$\theta(n_{s+1}) \sim \frac{(n_s^4 - n_s^2) \log (n_s^4)}{4n_s^4 \log n_s} \sim 1,$$

$$\theta([n_s^2 \log n_s]) \sim \frac{(n_s^2 \log n_s - n_s^2) \log (n_s^4) + O(n_s^2 \log n_s)}{n_s^2 \log n_s^4 \log \{n_s^2 \log n_s\}} \sim 2.$$

It is easily seen that $\limsup_{n\to\infty} \theta(n) = 2$; $\liminf_{n\to\infty} \theta(n) = 1$. Hence f(z) is an integral function of order 1 and lower order 1/2. Let now

$$\epsilon_m = \begin{cases} 1 & \text{when } m = [n_s^2 \log n_s] \\ 0 & \text{otherwise.} \end{cases}$$
 (s = 1, 2, 3, ...)

Then

$$F(z) = \sum_{1}^{\infty} a_n \epsilon_n z^n = \sum_{1}^{\infty} \frac{\epsilon_n z^n}{r_1 r_2 \cdots r_n}$$

is an integral function of order 1/2. If

$$\epsilon_m = \begin{cases} 1 & \text{when } m = n_s \qquad (s = 1, 2, 3, \cdots) \\ 0 & \text{otherwise} \end{cases}$$

then F(z) is of order 1. Let 1/2 < x < 1 and $\epsilon_m = 1$ when $m = [\exp(4x \log n_s)]$ ($s = 1, 2, 3, \cdots$) and zero otherwise; then F(z) is of order x.

PROOF OF THEOREM 5. Let $|\epsilon_n| = 1$ for $n = N_1, N_2, \cdots N_p, \cdots$ $(N_1 > n_0)$. We write $N_p = N$. Let $R_N = \vartheta \psi(N-1)$ and $|z| = R_N = R$.

$$\mu(\mathbf{r},f) = |a_N| \mathbf{r}^N = \mu(\mathbf{r},F) \qquad \text{for } \psi(N-1) \leq \mathbf{r} < \psi(N)$$

and R lies inside this interval.

$$\left| f(z) \right| = \left| \sum_{0}^{N-1} a_n z^n + a_N z^N + \sum_{N+1}^{\infty} a_n z^n \right|$$
$$\geq \mu(R, f) - \left| \sum_{0}^{N-1} a_n z^n \right| - \left| \sum_{N+1}^{\infty} a_n z^n \right|.$$

Now

$$\left|\sum_{0}^{N-1} a_{n} z^{n}\right| \leq \left|a_{N-1}\right| R^{N-1} + \cdots$$
$$\leq \mu(R) \left\{\frac{1}{\vartheta} + \frac{1}{\vartheta^{4}} + \frac{1}{\vartheta^{9}} + \cdots + \frac{1}{\vartheta^{(N-n_{0}-2)^{2}}} + o(1)\right\}$$
$$\leq \mu(R) \left\{\frac{1}{\vartheta} + \frac{1}{\vartheta^{4}} + \frac{1}{\vartheta^{9}} + \cdots \text{ ad inf}\right\} + \frac{\mu(R)}{10^{10}}$$

1946]

for all large N.

$$\left|\sum_{N+1}^{\infty} a_n z^n\right| \leq |a_{N+1}| R^{N+1} + \cdots$$
$$\leq \mu(R) \left\{ \frac{1}{\theta} + \frac{1}{\theta^4} + \frac{1}{\theta^9} + \cdots \right\}.$$

Hence for all large R

$$|f(z)| > \frac{\mu(R, f)}{10000}$$

Similarly

$$|F(z)| > \frac{\mu(R, f)}{10000}$$
.

Hence f and F are not bounded on any line $\arg z = \alpha$. Since

$$\liminf_{r\to\infty}\frac{\log\log\mu(r,f)}{\log r}=\lambda$$

the theorem follows.

Added in proof. A short note containing a part of each of the Theorems 1, 2, and 3 appeared in J. Indian Math. Soc. vol. 9 (1945) pp. 50-54.

MUSLIM UNIVERSITY