ON THE SINGULARITIES OF A CLASS OF FUNCTIONS ON THE UNIT CIRCLE

S. M. SHAH

Pólya has suggested and Szegö and others have proved the following theorem.¹

THEOREM. Let f(z) be a function regular in the whole plane including $z = \infty$ except at z = 1. Let

$$f(z) = \begin{cases} \sum a_n z^n, & |z| < 1, \\ \sum b_n/z^n, & |z| > 1. \end{cases}$$

If $a_n = O(n^k)$ and $b_n = O(n^k)$ then f(z) is a rational function.

The above theorem is generalized in this paper as follows.

THEOREM 1. Let f(z) be regular in the whole plane including $z = \infty$, except possibly at a certain set S of points on |z| = 1 (the set S being not everywhere dense on the complete circumference of the unit circle). Let

$$f(z) = \begin{cases} \sum a_n z^n, & |z| < 1, \\ \sum b_n / z^n, & |z| > 1, \end{cases}$$

and let $a_n = O(n^k)$, $b_n = O(n^k)$; then the following results hold.

- (i) Every isolated singularity on |z| = 1 will be a pole of order not exceeding k+1.
- (ii) If there are only a finite number of singularities on |z| = 1, then f(z) is a rational function.

THEOREM 2. There exists a function satisfying the hypothesis of Theorem 1 and having an infinite number of singularities on the unit circle; also there exists a function satisfying the same hypothesis and having no isolated singularities.

LEMMA 1. Let f(z) be an integral function and let

$$I_{p}(r) = \int_{0}^{2\pi} \left| f(re^{i\phi}) \right|^{p} d\phi \qquad \text{where } p > 0$$

be bounded on a sequence of circles $r = r_n$ tending to infinity, for some p > 0. Then f(z) reduces to a constant.

Received by the editors November 28, 1945.

¹ J. Deutschen Math. Verein vol. 40 (1931) Aufgaben und Lösungen p. 81 (Polyá); ibid. vol. 43 (1934) Aufgaben und Lösungen pp. 13-16 (Szegö and others).

PROOF. $|f(z)|^p$ is subharmonic in any region of the z-plane. By Poisson's integral formula

$$|f(z)|^p \le \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2) |f(Re^{i\phi})|^p d\phi}{R^2 + r^2 - 2rR\cos(\phi - \theta)}$$

where $|z| = r < R = r_n$. Hence

$$\left| f(z) \right|^p \leq \frac{1}{2\pi} \frac{R^2 - r^2}{(R - r)^2} \int_0^{2\pi} \left| f(Re^{i\phi}) \right|^p d\phi \leq K \frac{R + r}{R - r}.$$

Putting R = 2r we get

$$| f(z) |_p \le 3K/2$$
 on $|z| = R/2$.

Hence f(z) is bounded on $|z| = r_n/2$ and so it reduces to a constant.

LEMMA 2. Let f(z) be regular for $|z| \ge H$ except probably at infinity; and let

$$\int_0^{2\pi} |f(z)|^p d\phi \qquad (p > 0)$$

be bounded on a sequence of circles $|z|r=r_n$ tending to infinity. Then f(z) is regular at infinity.

PROOF. We can write f(z) = g(z) + h(z) where g(z) is an integral function and h(z) regular at infinity. Since h(z) is bounded at infinity, it follows from Minkowski's inequality when p > 1 (and still simpler when $p \le 1$) that $\int_0^{2\pi} |g(z)|^p d\phi$ ($z = re^{i\phi}$) is bounded on a sequence of circles $r = r_n$ tending to infinity. Hence g(z) is constant by Lemma 1 and so f(z) is regular at infinity.

PROOF OF THEOREM 1. To prove that every isolated singularity will be a pole, it is enough to prove that if z=1 is an isolated singularity, it is a pole since every other singularity can be brought to z=1 by a rotation. We suppose that k is a positive integer. We have already supposed that z=1 is an isolated singularity of f(z). Let x=(1+z)/(1-z). This transforms the unit circle in the z-plane into the imaginary axis in the x-plane and z=1 corresponds to $x=\infty$. The function $\phi(x)=f(z)$ given by the above relation is therefore regular for $|x| \ge R_0$ (where R_0 is some number), except at $x=\infty$.

From our assumptions about the coefficients we obtain

$$|f(z)| \leq \frac{c}{|1-|z|^{k+1}}$$

in the neighbourhood of the circle |z| = 1. Hence

$$|(1-z)^{k+1}f(z)| \le c \left|\frac{1-z}{1-|z|}\right|^{k+1}$$
.

Let $\psi(x) = (1-z)^{k+1} f(z)$ where z = (x-1)/(x+1). Then

$$|\psi(x)| \leq \frac{2^{k+1}}{|x+1|^{k+1}} \frac{c}{|1-|(x-1)/(x+1)||^{k+1}}$$

$$\leq \frac{c_1}{||x+1|-|x-1||^{k+1}}.$$

Let $x = \rho e^{i\gamma}$. Then $|x+1|^2 - |x-1|^2 = 4\rho \cos \gamma$. Hence

$$| \psi(x) | \leq \frac{c_1 \{ |x+1| + |x-1| \}^{k+1}}{\{ ||x+1|^2 - |x-1|^2| \}^{k+1}}$$

$$\leq c_1 \left\{ \frac{|x+1| + |x-1|}{4\rho |\cos \gamma|} \right\}^{k+1}$$

$$\leq \frac{c_2}{|\cos \gamma|^{k+1}}$$

if $\rho \geq \rho_0$ is sufficiently large. Hence

$$|\psi(x)|^{1/2(k+1)} \leq \frac{c_3}{|\cos\gamma|^{1/2}}$$

except when $\gamma = \pm \pi/2$. Hence

$$\int_{0}^{2\pi} |\psi(x)|^{1/2(k+1)} d\gamma \le \int_{0}^{2\pi} \frac{c_{3} d\gamma}{(|\cos \gamma|)^{1/2}}$$

which is a convergent integral. Hence

$$\int_{0}^{2\pi} |\psi(x)|^{1/2(k+1)} d\gamma$$

is bounded and so, by Lemma 2, $\psi(x)$ is regular at infinity. Hence

$$(1-z)^{k+1}f(z)$$

is regular at z=1, which shows that f(z) has a pole of order not exceeding k+1 at z=1.

This proves (i). To prove (ii) it follows by part (i) that each of the finite number of singularities on |z| = 1 is a pole. Hence f(z) is a regular function throughout the z-plane including infinity, except for a finite number of poles. Hence f(z) is a rational function.

PROOF OF THEOREM 2. Consider the function

$$f(z) = \sum_{1}^{\infty} \frac{1}{2^n} \frac{1}{(z - \alpha_n)}$$

where (α_n) is any sequence of points on |z|=1. If the sequence (α_n) has only one limit point the above function f(z) has a pole at each of these points α_n and an essential singularity at the limit point of the sequence (α_n) . It is regular elsewhere. If

$$f(z) = \sum_{0}^{\infty} a_{p} z^{p} \qquad \text{for } |z| < 1$$

then

$$a_{p} = -\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{1}{\alpha_{n}^{p+1}}$$

and therefore $|a_p| \le 1$. Similarly if $f(z) = \sum b_p/z^p$ (|z| > 1) then $|l_p| \le 1$. Hence a_p and b_p are certainly $O(n^k)$ for any $k \ge 0$. To prove the second part, it is enough to take (α_n) in the above example to be everywhere dense on some arc of the unit circle, the arc not being the whole of the circumference. The function f(z) will have a non-isolated essential singularity at every point of this arc and the coefficients a_n and b_n are bounded.

This example shows that the part (ii) of Theorem 1 is in a sense the best possible result, for the function constructed satisfies the conditions on the coefficients while it is not a rational function since it has an infinite number of singularities on the unit circle.

Muslim University