
ON FRACTIONAL DERIVATIVES OF UNIVALENT FUNCTIONS1 

H. P. ATKINS 

It has been shown by F. Marty [ô]2 that if ƒ(z) is analytic and uni
valent in the unit circle,/(0) =0, and /'(O) = 1, and if the Bieberbach 
conjecture [2] that |ƒ<•>(<» | Sn-nl is assumed when n>3, then 

(1) | ƒ<»>(*) | S nl(» + r)(l - r)—», n - 0, 1, 2, 3, • • • , 

where | z| = r, and that equality is attained for real positive z by the 
function ƒ(z) ~z(\—z)~-2. For # = 0 and w = l the inequality reduces 
to the well known relations obtained by Pick in evaluating the con
stant in the Verzerrungssatz of Koebe (see [2]). 

The purpose of this paper is to generalize this relation to include 
fractional derivatives and integrals. The bound obtained will be ex
pressed in terms of the ratio of the incomplete to the complete beta 
function, defined for p and q real and one or the other positive by the 
equations 

i rr 

B(p, q) J o 

i rl 

which are equivalent if both p and q are positive. Two separate defini
tions of the fractional derivative will be found useful; these may be 
shown equivalent for the values for which both are defined. For a <0 
the Abel-Riemann definition [l, 9] is more easily applied: 

oD*zf(z) - — r I ƒ(»)(! - wj~* dw, a<0t 

r(— a) Jo 
Am 

u U' tt'—m 

oD,f(z) « oDM f(z), m — 1 ^ a < m, 
dzm 

where m is a positive integer. For a^O the Laurent definition [4] is 
more satisfactory: 
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« r(a +1) r „a-x 
oDzf(z) = 1— I f(w)(w — z) dwt fl^O, 

2iri J P 
where P is a path from 0 once around z in the positive sense and re
turning to 0. To avoid ambiguity in the Laurent definition we shall 
use that determination of the multiple valued quantity (w — z)~a~l 

obtained by letting 
(w — z)~a~l = f-«-ier<*-*> («+!)*, 

where —7r<2^7r, at the start of the path P. The corresponding am
biguity in the Abel-Riemann definition will cause no difficulty. I t 
should be noted that the fractional derivative may be undefined for 
3 = 0. 

THEOREM. If f(z) is analytic and univalent in the unit circle with 
/(0) = 0 andf'(Q) = 1, and if a is any real number and n+1 the smallest 
non-negative integer greater than a, then (without restriction if a^*3, but 
assuming the Bieberbach conjecture if a>3)3 

oDlfiz)- ± o Z > r A o ) 

^ (1 - r)-«-2r(a + 1){alr(n + 1 - a, a + 2) + rlr(n - a, a + 2)} 

for ZT^O. Equality is attained for real positive z by the function f(z) 
= 0(1 -z)~K 

(The summation from 1 to n is to be interpreted as 0 if n<l, and 
oD%~}fu) (0) means the derivative of order a— j of the constant ƒ o )(0).) 

PROOF. If a < 0 , the desired relation follows from the Abel-Rie
mann definition, for making the substitutions 

* - 1 + r 
w -s ettf z = fe%t 

X 

and noting that, from equation (1) with w = 0, 

I /x- 1 + r \ I 
ƒ( eA S x\l - r ) - 2 - x(l - r)~\ 

I \ * / I 
we have 

8Using the Littlewood result [5] that |/(tt)(0)| <en-n\, the theorem may be 
changed so as to be valid without assuming the Bieberbach conjecture by inserting 
a factor e on the right side of the relation, making the relation a definite inequality, 
and deleting the last sentence. 
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I oDa,f(z) | £ — i — f * (1 - r f - V ( l - « f " ^ * - 1 + r)dx 
r(— a) J i - , 

= ( l ~ r ) - - 2 r ( a + l ) { ( a + l ) / r ( - a , a + 2 ) ~ ( l ~ r ) J r ( ~ a , a + l ) } . 

Using the reduction formula [8] 

UP, q) « f/r(# - lf ») + (1 - f)/r(#, ? ~ 1), 

which may easily be verified for all cases, we obtain the desired result 
for n = — 1, 

I oZ#(s) | 

g (1 - r)-*-2r(a + l ) { a / r ( - a, a + 2) + r / r ( - 1 - a, a + 2)}. 

If a à 0 we use the Laurent definition of the fractional derivative. 
Let b~a — n> where w= [a], and temporarily restrict b to be different 
from 0. Let g(z) = / ( M ) ( S ) - / ( n ) ( 0 ) , so that g{z) is analytic and g(0) = 0 . 

Select c between 0 and r, and take the path of integration P to 
consist of a straight line from 0 to (r — c+cr)eu

f a circle with z as 
center traversed once in the positive sense, and a straight line back 
toO. 

On the circular portion of this path, putting w — z+c(l— r)eid and 
integrating by parts with e~ibedd as the differential, 

T(b + 1) 
ƒ- w)(w — z^^dw 

2iri 

- _ (1 - r)-»rV-M«*([r - c + cr]e«) +0(c1-*)9 

where c6~10(c1""b) is bounded, for fixed z, as c tends to 0. 
On the two straight portions of the path P , taken together, 

T(b + 1) r 
:— I g(w)(w — z)~h~ldw 

2wi J 
T(b + 1) C r~c+cr 

« — -—- I g{\ w\ eu)(r - I w\ )-»~ier<H.i><#-r><eitf| w ) 
2fl"i •/ 0 

r(ft + i) r(* + 1 ) r° . 1 1 . 1 1 
2 x ^ •/ r—c-f cr 

1 /• r—c+cr 

= e~hii I g( | w | «")(' — I w| Y*~xd\w\. 
r(— 6) •/ 0 

The substitution |w| = ( # ~ l + r ) / # and integration by parts with 
(1— x)~*~ldx as the differential give 
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r(i-J) 
e~bit(l - r)-*(l + c)cr*g([r - c + cr]eu) 

r(i 

1 /• 1/(1+0 /x-l+r \ 
e-bit(l-r)-b(b-1) I x^(l-*)-»*( 1") dx 

-b) J i-.r \ x / 
1 /•!/<!+•) / s - l + r \ 

+ «a-«<«(l- r)i-» I * » - | ( l - * ) - y ( ««)<**. 
r ( l - J ) J l - r \ * / 

Combining this with the value obtained on the curved portion of P , 
and allowing c to approach 0, we have 

oDzg(z) 
1 rl /x-l+r \ 

= *-MI(l-r)-*(J-l) I **-f(l-*)""**( «"l** 
r ( l — b) J i-r \ X / 

1 r1 /x-l+r \ 
+ «a-w«(i-.r)i-» I * M ( i -* )~Y( *")<**. 

r ( l - J ) J i - r \ S / 
Integrating the first integral by parts, with #6~2(1 — x)~hdx as the 

differential, gives finally 
b 

eu | dx. 

oDzg(z) 
i r 1 / * - i + f \ 

= €a-w«(l-r)i-* s»-2(l-s)~y ( e") 
r ( l - è ) J i _ r \ x / 

This formula may be verified directly for b — 0 so the restriction on b 
may be removed. If we note that, by univalence of/(s), formula (1) 
gives (see also [7]) 
\ / x - 1 + r M I / x - l + r \ I 

I \ * / I l \ * / | 

^ (n + 1)!{(» + 2)*»+» - ( 1 - r)*»+2}(l - r)-»-8, 

the right side of the equation for JD\g{z) may be reduced to the bound 
given in the theorem by a procedure exactly analogous to that for 
a < 0 . Thus it remains necessary to show only that 

oDzg(z) 

From 

oDlf(z) - Z o Z C W o ) 
i - i 

OX?*/ (z) = 1 I ƒ (W)(W — 2) ÖW 
2iri J P 

we can obtain, using the proper determination of (w—z)~b~~l and in-
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tegration by parts with f(n)(w)dw as the differential, 

oZ),/ (g) « - • ƒ (0)r e + oZ>, ƒ (z). 

The process may be repeated to get 

y«o T(l - a + j ) 

But 

o£>* ƒ ( 0 ) « — — ƒ (0)f e 
r ( i - a + j) 

by direct evaluation, so 

and 

oD^s) = oDlfM(z) - oDlfM(0) = OD:/(Z) - i o D r ' A o ) 

= oZ>:/(2)- toDTY^O), 

since ƒ(())= 0. 
Since every relation in the entire proof, except those limiting the 

range of a and &, becomes an equality for real positive z when f(z) 
~z(l —z)"2, this completes the proof. 

The result reduces to that of Marty for non-negative integral values 
of a. 
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