
ON AREOLAR MONOGENIC FUNCTIONS 

MAXWELL O. READE 

Let/(js) = u(x, y)+iv(x, y), z = x+iy, be a complex-valued function 
defined in the unit circle D: \z\ < \.f{z) is said to be areolar monogenic 
in D if and only if u(x> y) and v(x, y) (and hence f (z)) have continuous 
partial derivatives of the second order such that 

(1) UXy = - 2-X(VXX — Vyy), VXy = 2~1{UXX ~ Uyy) 

hold in D [3J.1 I t is known that an areolar monogenic function has 
partial derivatives of all orders [3]. 

Whereas (1) is a differential characterization of areolar monogenic 
functions, it is the integral characterization contained in the follow­
ing theorem that forms the basis for this note. 

THEOREM A [3 ]. Iff(z) is continuous in D, then a necessary and suffi­
cient condition that f(z) be areolar monogenic in D is that there exist a 
function g(z), analytic in Dy such that 

(2) g(«) = — - f ƒ({•)#, f = S + ir), 
irr'l J C(z;r) 

holds for all circles C{z\ r), with center z and radius r, in D. 

I t should be noted that a symbol once introduced holds its meaning 
throughout the paper. 

If f(z) is continuous in D, then the right-hand member of (2) is a 
function of z and r, defined for z in the circle DT\ \z\ < 1 — r, and for 
all r such tha t 0 < r < l . Now if the definition 

(3) G r ( s ) s - — f / ( f ) # f 0 < r < l , \z\ < l - r , 

is made, then the following is an extension of Theorem A. 

THEOREM 1. If f(z) is continuous in D, then a necessary and suffi-
dent condition that f (z) be areolar monogenic in D is that Gr(z) be ana­
lytic in Drj for all r, 0 <r < 1. 

Necessity. This is precisely the necessity part of Theorem A. 
Sufficiency. Suppose that in addition f(z) has continuous partial 
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derivatives of the first order in D. Then from (3) and Green's lemma 
it follows that 

(4) Gr(z) =^rff Giftdl-dr,, 
TT? J J D(z;r) 

where 

(5) G(z) = £/(*, y) + iV(x, y) s (u9 - vv) + i(uy + vx), 

and where D(z; r) is the closed circular disc with center at z and radius 
r. Since ƒ (z) has continuous partial derivatives of the first order in Z>, 
it follows from (4) and (5) tha t Gr{z)"^G{z)1 as r—>0, on each closed 
subset of D. Hence, since Gr{z) is analytic in Dr, for all r, it follows 
that G(z) is analytic in D. Therefore U(x, y) and V(x, y) are conjugate 
harmonic functions such that (4) and the Gauss mean-value theorem 
for harmonic functions yield 

Gr(z) = — f f G(ï)dïdv = G(«) 

for all z in D r , 0 O < l . 
I t now follows from Theorem A tha t / ( s ) is areolar monogenic in D. 
Now if ƒ (2) is merely continuous in D, then for sufficiently small p, 

the mean-value function 

(6) A(f;z;p)^~ff f(£)d&i 
Wp J J D(z:p) 

satisfies the hypotheses of this lemma in the circle Dpy for 0 < p < l ; 
moreover, A(f\ z\ p) has continuous partial derivatives of the first 
order in Dp [ l ] . Therefore by the preceding part of this proof, it fol­
lows that for all sufficiently small p, the function 

—— f - 4 ( / ; f ; p ) # . o < r + p < i , 
irrll J C(z;r) 

is analytic in Dr+P and independent of r. But A (ƒ ; z\ p)->-f(z) as p—K), 
on each closed subset of D [ l ] . Hence it follows that for 0 <r < 1, the 
right-hand member of (2) is analytic and independent of r in Dr. 
Hence, by Theorem A, f(z) is areolar monogenic in D. 

COROLLARY 1. Iff(z) is continuous in D, then a necessary and suffi­
cient condition that f (z) be areolar monogenic in D is that A(f; z; p) be 
areolar monogenic in DP1 for all p, 0 < p < 1. 

COROLLARY 2. Iff(z) is areolar monogenic in D, then f (z) has the fol-
lowing mean-value property : 
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J C(z;r) J C(z-.r) 

for each C(z\ r) in Dp. 

Proofs of the corollaries are contained in the proof of Theorem 1. 
The equation (2) and recent results on the polygonal mean-values 

of harmonie polynomials [2] suggest the analogue of (2) wherein 
C(z\ r) is replaced by a regular n-gonpn{z; r; <£), n^3. Let P n (s ; r; 0) 
denote the closed, finite region bounded by the regular n-gon 
pn(z\r\<j>) whose center is at z and whose inscribed circle has radius r\ 
0 denotes the angle from R to N, ~ir/n ^<t> <Tr/n, where R is the ray 
extending horizontally to the right from z and N is the exterior nor­
mal a t the point where R emerges from the polygon. 

Here n denotes a fixed, positive integer, n è 3, and 0 always denotes 
an (arbitrary) angle, —w/n^<l)<ir/n. For brevity, pn{z\ r\ 0) will be 
denoted by p(z; r) and Pn(z; r; 0) will be denoted by P(z; r) ; \P\ will 
denote the area of P ( s ; r). 

The analogue of (2) referred to above is 

(7) Fr,M « T^TT f ƒ(?)# , 
\P I * J p(z;r) 

which is defined on an open subset Drt<t> of Z>, for sufficiently small r. 
The following result is comparable to the preceding theorem. 

THEOREM 2. If f(z) is continuous in D, then a necessary and suffi­
cient condition that f(z) be areolar monogenic in D is that Fr,^{z) be 
analytic in Drt<f,for each pair r, 0. 

Necessity. If/(z) is areolar monogenic in D1 then f(z) has continuous 
partial derivatives (of all orders) in D [s]. Hence (7) and Green's 
lemma yield the following representation for Fr,<f>(z) : 

(8) Fr,,(z) = T^T f f GW&I. 
\F I J J p(Z;r) 

where, by (1) and (5), G(z) is analytic in X>. Now (8) shows tha t 
Fr,^{z) is an integral mean of G(z), so that Fr,<t>(z) is analytic wherever 
defined, that is, in Dr,$. 

Sufficiency. First suppose that f(z) has continuous partial deriva­
tives of the first order in D. Then it follows from (7) and Green's 
lemma tha t Fr,<i>(z) can be written in the form (8). I t now follows 
from (8) that Fr,<i>(z)->-G(z), as r-»0, on each closed subset of D. Since 
Fr,<t,(z) is analytic in Dr^<i>1 for all sufficiently small r, it follows that 
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G(z) is analytic in D. Hence, as in the proof of Theorem 1, it follows 
that ƒ (z) is areolar monogenic in D. 

The requirement that f(z) have continuous partial derivatives of 
the first order in D may be removed as in the proof of Theorem 1. 
This completes the proof. 

I t should be noted that if f(z) is an arbitrary areolar monogenic 
function (hence, if G(z) is an arbitrary analytic function) in D, then 
Frt4>(z) is analytic in Dr,^ though not necessarily independent of r. 
Indeed, if Fr^{z) is to be both analytic and independent of r, in Dr%& 
then the following result holds. 

THEOREM 3. If f(z) is continuous in D> then a necessary and suffi­
cient condition that Frt<t>(z) be both analytic and independent of r in 
Drt<fn for fixed <£, is that f (z) be areolar monogenic in D, with the represen­
tation 

(9) ƒ(*) s 2 - 1 £ ck(zz* - s*"1) + V, + i*x, 
o 

where z = x—iy, where the ch are arbitrary complex constants, and where 
ty(x,y) is an arbitrary f unction harmonic in D. 

To prove Theorem 3, the following lemma is needed. 

LEMMA. If f{z) is areolar monogenic in D, then a necessary and suffi­
cient condition that G(z) be a polynomial in z of degree at most (« —1) 
is that f (z) have the representation (9). 

Necessity. Let G (z) have the representation 

(10) G(z) = £ c#h. 
o 

Now Haskell has shown [3] that for areolar monogenic/^) there exist 
real functions ix(x, y), v(x, y), ^(x, y), with S£"(#, y) harmonic in D, 
such that 

(11) ƒ(*) ^ (M* + Vy) + i(vx - Hy) +Vy+ i ¥ „ 

where 

(12) p + h ^ - f f log -j G^d&rj. 
2TT J J D \ z — % I 

If the substitutions ^ — reie, z^pe1* are made in (10) and (12), then 
(12) yields 
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/ • + » - - — I log— + E - - C 0 8 i ( « - ^ 
ZwJo Jo L p î #p J 

•| 2 ckr
keik6]rdrd0 

i r1 r2rr i J^ P* n 
(13) - - I i o g _ + 2 : ^ - c o s * ( t f - « 

4 L 0 H l 1 * J 

The representation (9) for f(z) now follows from (11) and (13). 
Sufficiency. If ƒ(z) is given by (9), then a computation shows that 

G(z), given by (5), has the form (10). 
PROOF OF THEOREM 3. If f(z) is areolar monogenic in D, with repre­

sentation (9), then it follows from the lemma that G(z) has the form 
(10), such tha t U(x, y) and V(x, y) are harmonic polynomials of de­
gree at most (# — 1). I t is known that such harmonic polynomials 
satisfy 

(14) 

U(x, y) - U{z) = j — | f f f/GWr,, 

I JT J •/ J P(«;r) 

j r I J J P(*;r) for each P(z; r) in D [2]. From (5), (8) and (14), it follows that Fr^(z) 
is independent of r, (j>. This proves the necessity part of the theorem. 

On the other hand, if Fr^(z) is analytic and independent of r in 
Dr,<f>, then by the lemma, f(z) is areolar monogenic in D. Moreover, 
it follows tha t the real and imaginary parts of G (z) satisfy (14) and 
hence U(x, y) and V{x, y) have the representations implied by 

(15) G(z) s U + iV = £ ckz
k + **/(***), a = ««*, 

o 

where the symbol "J" means "the imaginary part of" [2]. However, 
since £/(x, y) and F(x, y) are conjugate harmonic functions, it follows 
that cn = 0 in (15). Hence G(z) is a polynomial of degree at most 
(« — 1); therefore, by the lemma, /(z) is areolar monogenic in D with 
representation (9). The proof is now complete. 
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The author is indebted to the referee for the observation that Theo­
rem 3 above is true for variable #. 
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