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n-\ CAN BE APPROXIMATELY GIVEN 
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1. Summary. Given n arbitrary complex numbers zit • • • , zny it is 
easy to construct (see 6.2) an irreducible algebraic equation 

r + air-1 + • • • + «* » o 
with complex rational coefficients avy such that its n roots fi, • • • , fn 

lie within assigned neighbourhoods of Si, • • • , zn. If the numbers 
2i, • • • , zn are symmetric to the real axis, then there exists an equa­
tion with real rational coefficients whose roots are near z%} • • • , zn. 
If, however, the coefficients av are required to be integers, then in 
sufficiently small neighbourhoods there will be no system f i, • • • , f», 
except possibly the system Zi, • • • , zn itself, as follows immediately 
from the continuity of the coefficients as functions of the roots. 

In this note we prove (Theorem 3.2) that for every n — 1 given 
numbers Zi, • • • , s»_i, and every e > 0 , there exists an irreducible 
equation with complex integral coefficients «i, • • • , an and with roots 
f„ such tha t |f, — zv\ < e for *> = 1, • • • , n — 1. The same is true (§5) 
for real integral coefficients provided that the numbers zi, • • • , zn-\ 
are symmetric to the real axis. Some remarks on the possible location 
of the free root fw are added (§4). 

The proof of the main theorems employs the well known facts of 
the solubility of a system of linear Diophantine inequalities under 
certain conditions, and of the uniform continuity of the roots of an 
algebraic equation 

boyn + . . . + bn = o 

with general complex coefficients bvi as functions of the ratios of these 
coefficients. A topological proof of the latter theorem is prefixed (§2) ; 
uniform continuity, and incidentally ordinary continuity, of the roots 
of an algebraic equation is exhibited as a consequence of the classical 
proposition of set theory that asserts the uniform continuity of every 
topological mapping of a compact space.1 

2. The theorem on uniform continuity. 2.1. Every polynomial 

zn + axz
n~l + • • • + an 

corresponds to a point a = (ah • • • , an) of the complex affine w-space 

Received by the editors June 17, 1946. 
1 For example Sierpinski, General topology, p. 99. 
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An. The system (zu • • • , zn) of the roots of the polynomial can be 
considered as a point of the complex symmetric-affine w-space Zn that 
is obtained from the ordinary affine w-space by identifying points 
(zi, • • • , zn) tha t have the same coordinates zp in different order. 
Neither An nor Zn is compact. 

The closure of Ai = Zi formed by adding the point oo is the com­
plex projective one-space B\. By allowing zv to take the value oo, the 
space Zn is enlarged and becomes the symmetric-multiprojective 
space Yn that contains as points all the systems (yl9 • • • , yn) of 
roots of equations b0y

n + • • • +ftw = 0. The coefficients ft0, • • • , bn 

are the coordinates of a point of the complex projective w-space Bn) 
to every point of Bn there correspond infinitely many points of An+i 
with normalized coordinates, that is, such that 5Z| &y|

 2==1. Any two 
normalized representations of the same point of Bn differ by a factor 
Xwith |X| = 1 . 

The spaces Yn and Bn are compact, and since the mapping of 
y = (yii • • • , yn) on ft = (fto, • • • , bn) is one-to-one, continuous, and 
defined for every y, this mapping is topological. 

2.2. An appropriate metric of Bn is obtained by defining the dis­
tance p(ft, ft') between two points of Bn as that between the two 
infinite subsets of An+i corresponding to the two given points, that 
is, as the least p for which there exist normalized representations of b 
and b' with Ç£\bv — bl | 2 ) 1 / 2 = p, or alternatively, max, | ft„ — ft/ | = p.2 

The normalized representation of one of the points, say ft, can be 
arbitrarily chosen when determining the distance; there follows at 
once p(ft, ft') +p(ft, ft") èp(&', ft"). 

In particular the distance p(y, yf) between two points y and y' of 
B\ = Yi is defined as the least p with ( | zx—z( | 2 +1 z2 — zi \2)1/2 = p for a 
suitable representation y=Zi/z2y y' —z[jz{ with | z<\ 2 +1 z2\

2 = | z( \2 

•\-\zl 12 = 1, or equivalently by use of the spherical distance. 
In the same way a metric of Yn can be introduced by defining the 

distance p(y> y') between two points of Yn as that of the sets of iden­
tified points, that is, as the least p for which there exists a permuta­
tion 1', • • • , n' of 1, • • • , n such that all p(yV} y'v>) ^ p . 

With these definitions of distances in Bn and Fn , the theorem on 
the uniform continuity of every topological mapping of a compact 
space entails: 

If the distance between the coefficients of two polynomials of the same 
degree is less than e, the distance between their systems of roots is less than 

2 Or by any other natural extension of a metric from one to more dimensions, in the 
sense of Th. Motzkin, Sur le produit des espaces métriques. Comptes Rendus du 
Congrès International des Mathématiciens Oslo 1936, vol. 2, p. 137. 
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e', and e'—»0 for e—»0.8 

The example of the polynomials ezn~ 1 and 1 shows that uniform 
convergence independently of the degree n does not hold for the above 
distance; perhaps it holds for a similar definition in regard to 

Z(M"=o. 
3. The theorem on approximation by conjugate integers. 3.1. For 

any given complex number z and every e > 0 there exists a root f of an 
irreducible algebraic equation f2+oJif+«2 = 0 with complex integer co­
efficients ai and on such that | f — z | < e. 

PROOF. The function a112 maps the parallels to the axes through 
complex integers into two orthogonal systems of equilateral hyper­
bolas. For integral a—* <» their consecutive intersections become arbi­
trarily near to each other. The non-integral numbers f = a1/2—a' with 
complex integral a and a1 are therefore dense on the whole plane. 

Alternatively, this theorem is a particular case of 3.2 and can be 
proved in the same way, every step of the proof becoming much 
simpler. 

3.2. For any n — \ given complex numbers 

and every e > 0 there exists a system 

fl, * * * > fn-i 

of roots of an irreducible algebraic equation f n + a i f n ~ 1 + • • • + a n = 0 
with complex integral coefficients av such that 

| f„ - 2, | < e, v = 1, • • • , n - 1. 

3.3. PROOF. The numbers zv are roots of an equation zn"x + a!Zn~2 

+ • • • +a n ~i = 0 with general complex coefficients av — C2V-i+ic2r. 
We assume the real numbers 

1, Cif • • • , C2n-2 

to be rationally independent, tha t is, not to fulfill any homogeneous 
linear equation with coefficients that are rational and not all 0. If 
necessary we can achieve this independence by slightly changing the 
numbers ch • • • , c2n-2 one after the other, always avoiding the enu-

3 With the same proof, the theorem on uniform continuity may be enunciated for 
polynomials with n real roots, even before introducing complex numbers. Indeed, the 
theorem on uniform continuity and that on the existence of the roots of an algebraic 
equation (the "fundamental theorem of algebran) are independent of each other. 
For a topological proof of the "fundamental theorem," see W. L. Chow, Math. Ann. 
vol. 116 (1939) p. 463; for an elementary proof see Th. Motzkin and A. Ostrowski, 
Preuss. Akad. Wiss. Sitzungsber. 1933, p. 255. 
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merable set of values with a rational relation between them and the 
preceding numbers. Because of the continuity of the roots of an alge­
braic equation, the new roots zv are near to the old ones, so tha t 
numbers fv near enough to the new roots zv are also near to the given 
ones. 

3.4. We also assume the numbers zv> and every subset of them, not 
to be a system of roots of an algebraic equation with complex integral 
coefficients. Otherwise replace the zv by zv\ with a suitable real ra­
tional X near 1. This does not affect the above property of rational 
independence, since the av are only multiplied by real rational factors. 

Then the existence of a system fi, • • • , fn of roots of an algebraic 
equation with complex integral coefficients entails its irreducibility for 
sufficiently small e. For if there existed a sequence of reducible sys­
tems with €—>0, then infinitely many of them would have a subsystem 
belonging to the same indices v<n. Passing to the limit, the corre­
sponding zp would form a system of roots of an algebraic equation 
with complex integral coefficients. 

3.5. Now if there exist complex integers ah • • • , an such that 

| (ay+i — avai) — (a„+i — ava\) | < «i, v = 1, • • • , n — 1, 

where an = 0, put ai — ai=zn. Then the coefficients ap+i of Çn+aiÇnr~1 

+ • • • +an differ from those 

av+\ = av+i — avzn == ct>v+i — avQ>i -t~ *Mxi 

of (z — zn)(z
n~l+a1z

n~2+ • • • + a n - i ) by less than eh and the coeffi­
cient of zn~l is a{ = a i in both polynomials. Hence the distance be­
tween the points (1, ait • • • , an) and (1, a / , • • • , an ') in complex 
projective w-space is less than €2, and e2—>0 for €i—>0. By the theorem 
on the uniform continuity of the roots of algebraic equations, the 
roots f i, • • • , f n and Zi, • • • , zn may be so arranged that the spheri­
cal distance (or distance as defined in 2.2) between corresponding 
roots is less than e3, and €3—>0 for €2—»0. Hence If* —s„| <e , 
v = l, • • • , n — 1, and e—»0for €3—»0. 

Since a{ =au we have f i + • • • +fw = 2 i+ • • • +zni whence 
\tn~Zn\ < ( » - l ) € . 

3.6. Now a theorem of Kronecker4 states that, for rationally inde­
pendent real 1, cu c2, • • - , arbitrary real du d2, • • • , and €i>0, there 
are real integers « i > 0 , 71, y2, • • • such that |aiCM — 7M — d^ <€i, 
/i = l, 2, • • • . Taking dit d2, • • • as the real and imaginary parts of 
aiaw--av+u we see that the Diophantine inequalities at the beginning 

4 For example Hardy-Wright, Theory of numbers, p. 370, Theorem 442. 
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of 3.5 can be solved for complex integers a i > 0 , ce2=71+^72, • • • . 
This completes the proof of 3.2. 

For a given cti there is at most one solution, if €1S1/2. 

4. Situation of the remaining root f». 4.1. For every N>0 there is 
an e(N)>0 such that for e<e(N) either |fn| >N or Çv = zVi *> = l, • • • , 
n — 1. 

PROOF. There exists either no value f with |f| fgiV such that 
Si, • • • , z»-i, f are the roots of an algebraic equation of degree n with 
complex integral coefficients, or one value, or (for the roots 21, • • •, zn-i 
of an algebraic equation of degree n — 1 with complex integral coeffi­
cients) every complex integer f with |f| ^ iV is appropriate; at any 
rate the number of the possible f is finite. For a given f, a system f„ 
close enough to the numbers Z\> • • • , zn-u T must coincide with them ; 
let €0 be a distance ensuring coincidence for every f. Now if there ex­
isted for every e' = l, 1/2, 1/3, • • • values f„ with | f„ | SN and 

f I èe'for every possible £*, then a subsequence of these fn would 
converge to a new f. Hence no such fn exists for a certain e'; then we 
may put e(N) =min(€ / , e0). 

4.2. There exist, however, values fn near any given direction. 
More precisely: 

The numbers f 1, • • • , f n may be required to have their sum in a given 
half strip that contains a complex integer ; or, what is less, f» may be re­
quired to be within a given angle with arbitrary vertex and arbitrarily 
small aperture* 

PROOF. The second part of the theorem follows immediately from 
the first part. Indeed, since every angle contains a half strip with 
infinitely many complex integers, the sum — CKI may be required to 
be within a given angle. Hence the same is true for zn = ai—ai and, by 
the inequality |fn—-2n| <{n — l)e at the end of 3.5, for fn. 

To prove the first contention, we remember that by 3.5, it is enough 
to show tha t the complex integer oti can be determined such that the 
numbers ava\ are, mod integers, near given numbers. If the given 
half strip contains an integer ray y+öx, x>0, we put ai=y + öa', 
a ' = l, 2, • • • . The Diophantine inequalities for a' , a% e*8, • • • are 
soluble, as in 3.6, if 1 and the real and imaginary parts of the numbers 
avh are rationally independent. Now every rational relation between 
them might be written as an equation ^ô„avô + Ô' =c with complex 
rational ô„ and 5' and real c; putting ôP5 = ô{, this would become a 

6 A strip between, but not including, two parallel straight lines is divided by a non-
parallel line into two half strips. A strip or half strip contains infinitely many complex 
integers either if it contains an integral ray (half straight line through two complex 
integers) or if its direction is irrational; otherwise it contains no complex integer. 
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similar relation for the numbers av. But the real and imaginary part 
of these numbers, and 1, have been supposed to be rationally inde­
pendent. 

On the other hand, if the given half strip has an irrational direction, 
that is, if it contains a ray x + (cx+c')i with variable real x>N (or 
x<N) and given real c' and real irrational c, then the imaginary part 
y' of ai = y-\-iy' is required to be near cy-\-c'. Hence the numbers cy, 
av(l-\-ic)y have to be, mod integers, near given numbers, for a y>N 
(or y<N). Such numbers exist provided that 1, c, and the real and 
imaginary parts of ai(l-\-ic), • • • , an-i(l+ic) are rationally inde­
pendent, which can be attained, as in 3.3, by small changes of the 
numbers av. 

5. The approximation theorem for real coefficients. 5.1. For any 
given numbers Z\, • • • , zn-i that are symmetric to the real axis and every 
€ > 0 there exists a system fi, • • • , f» of roots of an algebraic equation 
Çn+aiÇn~l+ ' • • + a n = 0 with real integral coefficients av such that 
If* —2*1 <efor allv^n — 1. 

Moreover} f „ may be required to be real if the corresponding zv is real, 
and f n may be required to be on a given real ray. 

The proof is as in the general case. The real numbers zv can be 
changed a little so as to be different from each other; then the sym­
metry of the corresponding roots f „ will compel these roots to be real. 
This change should be effectuated before the displacement ensuring 
that the numbers 1, au • • • , an-\ are rationally independent and that 
the zv have no subset which is the system of roots of an algebraic equa­
tion with real integral coefficients. The latter condition entails irre-
ducibility, the former the solubility of the Diophantine inequalities 
for real integral av and ai on the given ray, whence the theorem. 

5.2. Rational independence as required for this proof can also be 
attained by a simultaneous translation, according to the lemma: 

For every finite set zlf • • • , zn-\ that is symmetric to the real axis and 
every e > 0 there exists an e' with 0 < e ' < € such that the coefficients 
1, a / , • • • , an'_i of the equation with the roots Zi+e', • • • , zn-i + e' are 
rationally independent. 

PROOF. Otherwise, for every e', there would hold a rational relation 
with coefficients not all 0. The set of rational relations being enumer­
able, and the set of e' between 0 and e not, there would exist a relation 
holding for infinitely many e'. Since the at are polynomials in e', 
this relation belongs to every e'. But such a relation between the co­
efficients a(e), a'(e), • • • , a^n^(e)/(n-l) ! of 1, z, • • • , zn~l in a 
polynomial a(z+e) cannot exist, since a(e), • • • , a(n"~1}(e) are of de­
gree n — 1, • • • , 0. 
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6. Miscellaneous remarks. 6.1. Let 18(77) =j30rç
n+j3irçn~1 + • • • +@n 

have complex integral coefficients /?„, and let g be a complex integer. 
The polynomial pP(rj) + g , where p is a complex prime not dividing 

g/30, is irreducible.6 

PROOF. Otherwise £j3(ï?)+g=j3'0?)j3''(r?). The product of the high­
est powers in (3'(rj) and P"(rj) with coefficients not divisible by p is 
q (mod p), hence these powers are constants. The highest coefficients 
of P'(r)) and fi"(r]) would therefore be divisible by p, and p/3o by p2. 

6.2. In the proximity of every given n numbers z1} • • • , zn there are 
systems of roots of an irreducible equation of degree n with complex ra­
tional coefficients. 

PROOF. A polynomial J3(T?) with (for example rational) roots near 
the given numbers is easily found. The roots of pP(rj) + l are near to 
those of P(rj) if p is large, because of the continuity of the roots of an 
algebraic equation as functions of the coefficients, so that a suffi­
ciently large complex prime p not dividing j80 will do (6.1). 

If the given numbers are symmetric to the real axis, the polyno­
mials @(r}) and p(3(rj)-\-l may be assumed to be real. If we want the 
roots near the real zv to be real, coinciding real zv are first separated 
as in 5.1. 

6.3. The roots of irreducible equations of a given degree n*z2 with 
complex integral coefficients are dense on the whole plane. 

PROOF. This immediate consequence of Theorem 3.2 on systems 
n — 1 of whose numbers are approximately given follows already from 
3.1, without reference to 3.2. This is trivial for n — 2. Even the exist­
ence of a polynomial a(f ) of degree 2 with one root near a given num­
ber 2, whose coefficients are divisible by a complex prime p, follows 
by means of multiplication by p of a system of two conjugate alge­
braic integers one of which is near z/p (or also, if 3.1 is proved in the 
same way as 3.2, from the solubility of the Diophantine inequalities 
for av divisible by p). But if w>2, then a(Ç)a'(Ç)+p—where a'(f) 
is a polynomial of degree n — 2 with large coefficients divisible by p— 
has two of its roots near to those of a(J*)> and is irreducible by Eisen-
stein's rule. 

Likewise Theorem 5.1 implies that the roots of irreducible equa­
tions of a given degree n ^ 3 with real rational coefficients are dense 
on the whole plane, while for n = 2 they are dense only on the real 
axis. 

UNIVERSITY OF JERUSALEM 

6 This is Eisenstein's rule, after putting f =1/07, cf. van der Waerden, Moderne 
Algebra, vol. 1, p. 77. 


