A CHARACTERIZATION OF A SEMI-LOCALLY-CONNECTED PLANE CONTINUUM

F. BURTON JONES

In 1908 Schoenflies characterized a continuous curve (in the plane) by means of its complement. In view of more recent work, the kernel of his characterization may be stated as follows: In order that a plane, bounded, cyclic continuum be a continuous curve it is necessary and sufficient that (1) each of its complementary domains be simple and (2) the collection of its complementary domains be contracting. In his paper on semi-locally-connected sets, 3 G. T. Whyburn pointed out many similarities between semi-locally-connected sets and continuous curves. In particular (it is an immediate consequence of one of his theorems4) every complementary domain of a plane, bounded, cyclic semi-locally-connected continuum is simple. But since such a continuum need not be a continuous curve, the collection of its complementary domains need not be contracting. It is the purpose of this paper to point out what characteristic property this collection of complementary domains does possess: namely, the collection contains no folded subcollection. This property, in conjunction with (1) above, characterizes a plane, bounded, cyclic semi-locally-connected continuum. In fact it is shown that a plane, bounded continuum, whether cyclic or not, is semi-locally-connected if and only if its complement is non-folded. These theorems should prove useful when constructing examples of semi-locally-connected continua which also have certain other properties.

Definitions and notation. Let space be a simple closed surface (that is, a 2-sphere) and let S denote the set of all points of space. A circular region of S whose radius is ϵ and whose center is A will be denoted by $U(A, \epsilon)$. If M is a closed subset of S, each component of S-M

Presented to the Society, April 26, 1946; received by the editors July 5, 1946.

¹ A. Schoenflies, *Die Entwickelung der Lehre von den Punktmannigfaltigkeiten*, Leipzig, 1908, p. 237.

² R. L. Moore, Concerning the common boundary of two domains, Fund. Math. vol. 6 (1924) pp. 201-213, Theorem 9.

G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1942, Theorem 4.4, p. 113.

³ G. T. Whyburn, Semi-locally-connected sets, Amer. J. Math. vol. 61 (1939) pp. 733-749.

⁴ Loc. cit. footnote 3, p. 749. Cf. R. L. Wilder, *Sets which satisfy certain avoidability conditions*, Casopis pro Pestovane Mathematicky a Fysiky vol. 67 (1938) pp. 185–198, Theorem 8a, p. 196.

is a complementary domain of M. A complementary domain of a simple closed curve is called a simple domain. A connected set M is said to be semi-locally-connected provided that if P is a point of M lying in an open subset U of M, there exists an open subset V of M such that $U \supset V \supset P$ and M - V is the sum of a finite number of connected sets. If A and B are distinct points of a set M, M is said to be aposyndetic at A with respect to B provided there exists an open subset of M which contains A and belongs to a connected and relatively closed subset of M lying in M - B. If a set M is aposyndetic at a point A with respect to each point of M - A, M is said to be aposyndetic at A. If a set A is aposyndetic at each of its points, then A is said to be aposyndetic.

The following lemmas may be easily established with the help of the literature.

Lemma 0. In order that a continuum M in S be semi-locally-connected, it is necessary and sufficient that M be a posyndetic.

LEMMA 1. If T is a subcontinuum of an aposyndetic continuum M of S, and P is a point of M-T, then M-P contains a continuum K containing T such that M-K has no limit point in T.

LEMMA 2. If A and B are distinct points of the continuum M of S, and M is not aposyndetic at A with respect to B, then M plus any finite number of its complementary simple domains is not aposyndetic at A with respect to B.

DEFINITION. A countably infinite collection D_1 , D_2 , D_3 , \cdots of mutually exclusive simple domains in S is said to be *folded* provided there exist sets T_1 , T_2 , T_3 , \cdots and a point A of S such that (1) for each i, T_i is a spanning arc-segment (open arc) lying in D_i and separating D_i into two components C_i and E_i , (2) T_1 , T_2 , T_3 , \cdots converges to a subset T of S-A, and (3) for each number $\epsilon > 0$, there exists an integer n, so that both C_i and E_i intersect $U(A, \epsilon)$ when i > n.

Theorem 1. In order that a nondegenerate set M of S be a semi-locally-connected, cyclic continuum it is necessary and sufficient that the components of S-M form a collection of mutually exclusive simple domains containing no folded subcollection.

⁵ F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. vol. 63 (1941), pp. 545–553. For the definition of other terms and phrases the reader is referred to R. L. Moore's Foundations of point set theory and G. T. Whyburn's Analytic topology, vols. 13 and 28 respectively, of the Amer. Math. Soc. Colloquium Publications, New York.

Proof. Suppose that M is a semi-locally-connected, cyclic continuum (nondegenerate). Every component of S-M is a simple domain.⁴ Now suppose that G, the collection of all the components of S-M, contains a folded subcollection D_1, D_2, D_3, \cdots . There exists a point A and, for each positive integer i, there exists a spanning arc-segment T_i lying in D_i and separating D_i into two components C_i and E_i such that (1) T_1 , T_2 , T_3 , \cdots converges to a subset T of S-A, but (2) if ϵ is a positive number, there exists an integer n, so that for i > n, $U(A, \epsilon) \cdot C_i \neq 0$ and $U(A, \epsilon) \cdot E_i \neq 0$. It is clear that T is a continuum lying in M. By Lemma 1, M-A contains a continuum K containing T such that M-K has no limit point in T. Let ϵ be a positive number such that $K \cdot \overline{U}(A, \epsilon) = 0$. There exist an arc L and an integer n such that (1) the end points of T_n belong to K, (2) $T_n \cdot U(A, \epsilon) = 0$ and (3) L lies in $U(A, \epsilon)$ and contains points of both C_n and E_r . Let H denote an arc of L irreducible from \overline{C}_n to \overline{E}_n ; let J denote the boundary of D_n ; and let Q denote $S-(D_n+J)$. Both Hand K lie in J+Q. Furthermore the end points of H separate the end points of T_n from each other on J. But since K contains the end points of T_n , K must intersect H. This is a contradiction and establishes the necessity of the condition stated in Theorem 1.

Now suppose that G is a collection of mutually exclusive simple domains which contains no folded subcollection. Let M denote the closed set $S-G^{*,6}$ If M were not connected, then there would exist a simple closed curve J such that M would not intersect J but would intersect each complementary domain of J. Consequently neither complementary domain of J would be a subset of the element of G containing J. Since this is impossible, M must be connected. Suppose that M is not aposyndetic at a point A. Then there exists a point B such that if W is a subcontinuum of M-B, A is a limit point of M-W. Let U_1, U_2, U_3, \cdots denote a monotone descending sequence of circular regions centering on A and converging to A. Let V_1 , V_2 , V_3, \cdots denote a monotone descending sequence of circular regions centering on B and converging to B such that $\overline{U}_1 \cdot \overline{V}_1 = 0$. Although $M \cdot (S - V_1)$ contains $M \cdot \overline{U}_1$, no component of $M \cdot (S - V_1)$ contains $M \cdot U_1$. Hence $M \cdot (S - V_1)$ is the sum of two mutually exclusive closed sets M_1 and N_1 each of which contains a point of U_1 . There exists an arc in U_1 irreducible from M_1 to N_1 ; let T_1 denote this arc less its end points. The arc-segment T_1 lies in an element D_1 of G and separates it into two domains C_1 and E_1 each of which contains a point of V_1 since no arc in the boundary of D_1 lies in $S-V_1$ and contains

⁶ G^* denotes the sum of the elements of G.

both end points of T_1 . Using Lemma 2 it is easy to see that no component of $(M+D_1)\cdot (S-V_2)$ contains $M\cdot U_2$. Hence $(M+D_1)\cdot (S-V_2)$ is the sum of two mutually exclusive closed sets M_2 and N_2 each of which contains a point of U_2 . There exists an arc in U_2 irreducible from M_2 to N_2 ; let T_2 denote this arc less its end points. The arcsegment T_2 lies in an element D_2 of G and separates it into two domains C_2 and E_2 each of which contains a point of V_2 . Again no component of $(M+D_1+D_2)\cdot (S-V_3)$ contains $M\cdot U_3$. Hence $(M+D_1+D_2)\cdot(S-V_3)$ is the sum of two mutually exclusive closed sets M_3 and N_3 each of which contains a point of U_3 . There exists an arc in U_3 irreducible from M_3 to N_3 ; let T_3 denote this arc less its end points. The arc-segment T_3 lies in an element D_3 of G and separates it into two domains C_3 and E_3 each of which contains a point of V_3 . Continue this process indefinitely. Since the sequence T_1 , T_2 , T_3 , \cdots converges to A and V_1 , V_2 , V_3 , \cdots converges to B, G contains a folded subcollection D_1, D_2, D_3, \cdots contrary to hypothesis. Hence M is aposyndetic at every one of its points and is, by Lemma 0, semi-locally-connected. Now suppose that P is a cut point of M. Then M is the sum of two closed sets H and K such that $H \cdot K = P$. Let AB denote an arc in S-P irreducible from H to K. Since AB-(A+B)lies in an element of G, A and B belong to a simple closed curve lying in M. Hence P does not separate A from B in M. Thus the assumption that M contains a cut point has led to a contradiction, and the sufficiency of the condition stated in Theorem 1 is established.

COROLLARY 1. In order that a plane, bounded, cyclic continuum M be semi-locally-connected (or aposyndetic) it is necessary and sufficient that (1) each complementary domain of M be simple and (2) the collection of complementary domains of M contain no folded subcollection.

Remarks. Theorem 1 serves in a way as a characterization of a true cyclic element of a semi-locally-connected continuum (in a 2-sphere). In order to characterize a semi-locally-connected continuum (whether cyclic or not) by means of its complement, it is necessary to extend the notion of foldedness to open sets in general.

DEFINITION. If D is an open set, D is said to be folded provided that there exist in D mutually exclusive sets X_1, X_2, X_3, \cdots such that (1) for each i ($i=1, 2, 3, \cdots$), X_i is the sum of two arc-segments T_{i1} and T_{i2} having their end points in the boundary of D, (2) for each i, T_{i1} crosses T_{i2} , (3) the sequence T_{11} , T_{21} , T_{31} , \cdots converges to a subset T of S-D, and (4) the sequence of end points of T_{12} , T_{22} ,

 T_{32} , \cdots converges to a point of S-T. If the open set D is not folded, D is said to be non-folded.

THEOREM 2. In order that the continuum M of S be semi-locally-connected (or aposyndetic) it is necessary and sufficient that S-M be non-folded.

Proof. The condition is sufficient. For suppose, on the contrary, that M is not aposyndetic at a point A of M with respect to a point Bof M. Let U_1, U_2, U_3, \cdots denote a monotone descending sequence of circular regions centered on and converging to A, and let V_1 , V_2 , V_3, \cdots denote a monotone descending sequence of circular regions centered on and converging to B such that $\overline{U}_1 \cdot \overline{V}_1 = 0$. Now the component of $M \cdot (S - V_1)$ which contains A is not open (relative to M) at A. Hence the boundary of U_1 contains an arc-segment T_{11} whose end points, X_1 and Y_1 , lie in different components of $M \cdot (S - V_1)$ such that $M \cdot T_{11} = 0$. There exists a simple closed curve which separates X_1 from Y_1 and contains no point of $M \cdot (S - V_1)$; in fact, there exists a simple closed curve J_1 which separates X_1 from Y_1 and contains no point of $M \cdot (S - V_1)$ such that $J_1 \cdot T_{11}$ is connected. In J_1 plus the boundary of V_1 there exists an arc-segment T_{12} which crosses T_{11} , lies in $S-V_1$, and has only its end points in M. Obviously these end points lie in the boundary of V_1 . Let F_2 denote the boundary of U_2 and let K_2 denote the sum of the components of $F_2 - F_2 \cdot M$ which intersect T_{12} . Then K_2 is the sum of a finite number of arc-segments. Now since the component of $M \cdot (S - V_2)$ which contains A is not open (relative to M) at A and $T_{11}+T_{12}+K_2$ has only a finite number of limit points in M, the component of $(M+T_{11}+T_{12}+K_2)\cdot(S-V_2)$ which contains A is not relatively open at A. Hence F_2 contains an arc-segment T_{21} whose end points, X_2 and Y_2 , lie in M and in different components of $(M+T_{11}+T_{12}+K_2)\cdot(S-V_2)$ such that $(M+T_{11}+T_{12}+K_2)\cdot T_{21}=0$. There exists a simple closed curve J_2 which separates X_2 from Y_2 , and contains no point of $(M+T_{11}+T_{12}+K_2)\cdot (S-V_2)$ such that $J_2\cdot T_{21}$ is connected. In J_2 plus the boundary of V_2 there exists an arcsegment T_{22} which crosses T_{21} , lies in $S-V_2$, and has only its end points in M. These end points lie in the boundary of V_2 . Furthermore, $(T_{11}+T_{12})\cdot(T_{21}+T_{22})=0$. This process may be continued indefinitely. Since T_{11} , T_{21} , T_{31} , \cdots converges to A and the sequence of end points of T_{12} , T_{22} , T_{32} , \cdots converges to B, S-M is folded, contrary to hypothesis. Hence the condition is sufficient.

⁷ The reader should observe that no simple domain is folded and that if G is a collection of mutually exclusive simple domains, G^* is folded if and only if G contains a folded subcollection.

1947]

The condition is also necessary. For suppose, on the contrary, that S-M is folded. Then S-M contains an infinite sequence of pairs of arc-segments T_{11} , T_{12} , T_{21} , T_{22} , \cdots such that (1) for each i, T_{i1} and T_{i2} span M, (2) for each i, T_{i1} crosses T_{i2} , (3) for each i and j $(i \neq j)$, $(T_{i1} + T_{i2}) \cdot (T_{j1} + T_{j2}) = 0$, (4) the sequential limiting set T of T_{11} , T_{21} , T_{31} , \cdots is a subset of M, and (5) the sequence of end points of T_{12} , T_{22} , T_{32} , \cdots converges to a point B not belonging to T. By Lemma 1, M-B contains a continuum K and an open subset U of M such that $K \supset U \supset T$. Let V denote a circular region containing B such that $K \cup \overline{V} = 0$. There exists an integer i, such that T_{i1} has its end points in K but $\overline{V} \cdot T_{i1} = 0$, and such that T_{i2} has its end points in V. But since T_{i1} crosses T_{i2} , this is impossible.

COROLLARY 2. In order that a plane, bounded continuum be semilocally-connected (or aposyndetic) it is necessary and sufficient that its complement be non-folded.

THEOREM 3. In order that the boundary of a simply connected domain D be a continuous curve it is necessary and sufficient that D be non-folded.

PROOF. If D is non-folded, S-D is an aposyndetic continuum M. Hence the boundary of D is a continuous curve. On the other hand, if β , the boundary of D, is a continuous curve, then β is aposyndetic, and $S-\beta$ is non-folded. Hence D is non-folded.

THE UNIVERSITY OF TEXAS

⁸ See footnotes 3 and 5. Cf. R. L. Wilder, *Property S_n*, Amer. J. Math. vol. 61 (1939) pp. 823–832, p. 832 in particular.